Solution :
1. We know that : Buoyant force = weight of the liquid displace
= volume displaced x density of the fluid
Now volume of the man = [tex]$\frac{\text{mass}}{\text{density}}$[/tex]
Mass = weight / g
[tex]$=\frac{940}{9.8}$[/tex]
= 95.92 kg
And density = 1000 [tex]kg/m^3[/tex]
Therefore,
[tex]$\text{volume} = \frac{\text{mass}}{\text{density}}$[/tex]
[tex]$=\frac{95.92}{1000}$[/tex]
= 0.0959 [tex]m^3[/tex]
We know density of air = 1.225 [tex]kg/m^3[/tex]
∴ Mass of air displaced = 0.0959 x 1.225
= 0.1175 kg
Weight of the air displaced = 1.1515 N
Therefore, the buoyant force = 1.1515 N
2). As the balloon is not accelerated, the net force acting on it is zero.
Thus the weight that acts downwards = buoyant force upwards
So, the weight of the air displaced = weight of the balloon
= 17000 N
Therefore, the mass of the air displaced = volume of the air displaced (volume of the balloon) x density of air
[tex]$\frac{17000}{9.8} = \text{volume of air} \times 1.225$[/tex]
[tex]$\text{Volume of air displaced} = \frac{1700}{9.8 \times 1.225}$[/tex]
= 1416.0766 [tex]m^3[/tex]
A rocket explodes into two fragments, one 25 times heavier than the other. The magnitude of the momentum change of the lighter fragment is A) 25 times as great as the momentum change of the heavier fragment. B) The same as the momentum change of the heavier fragment. C) 1/25 as great as the momentum change of the heavier fragment. D) 5 times as great as the momentum change of the heavier fragment. E) 1/4 as great as the momentum change of the heavier fragment.
Answer:
B) The same as the momentum change of the heavier fragment.
Explanation:
Since the initial momentum of the system is zero, we have
0 = p + p' where p = momentum of lighter fragment = mv where m = mass of lighter fragment, v = velocity of lighter fragment, and p' = momentum of heavier fragment = m'v' where m = mass of heavier fragment = 25m and v = velocity of heavier fragment.
0 = p + p'
p = -p'
Since the initial momentum of each fragment is zero, the momentum change of lighter fragment Δp = final momentum - initial momentum = p - 0 = p
The momentum change of heavier fragment Δp' = final momentum - initial momentum = p' - 0 = p' - 0 = p'
Since p = -p' and Δp = p and Δp' = -p = p ⇒ Δp = Δp'
So, the magnitude of the momentum change of the lighter fragment is the same as that of the heavier fragment.
So, option B is the answer
Suppose a teenager on her bicycle. The rear wheel is spinning at an angular velocity of 281.133 rpm. She stops it in 3.686 s. How many revolution did it take to stop it?
Answer:
Explanation:
The formula for angular velocity is
[tex]\omega=\frac{\theta}{t}[/tex] where omega is the angular velocity, theta is the change in the angular rotation, and t is the time in seconds. First and foremost, we have the angular rotation in minutes and the time in seconds, so that's a problem we have to amend. Let's change the angular rotation to rotations per second:
[tex]281.133\frac{r}{min}*\frac{1min}{60s}=4.68555\frac{r}{s}[/tex]
Now we're ready to set up the problem:
[tex]4.68555=\frac{\theta}{3.686}[/tex] and we multiply both sides by 3.686 to get the rotations per seconds:
θ = 17.27 rotations
What is the name of the compound br8P4
Answer:
Octabromine tetraphosphide
Explanation:
This compound has in its formula:
- Eight bromines
- Four phosphorous
8 → octa prefix
4 → tetra prefix
Right answer is Octabromine tetraphosphide
If a wave has to travel 600m and it’s wavelength is 0.4 m , with a frequency of 500Hz. How much time will it take for the wave to travel 600m ?
Physics question plz help ASAP
what is science ? what qualities do we deal in deal in physic ?
science is all about the world around us
11. From this lab we can conclude that a) the heat transferred when objects are rubbed together creates an energy that can cause objects to move towards or away from each other. b) objects such as balloons and sweaters have a natural affinity towards each other. They will attract each other whether they are rubbed together or not. c) charges exert forces on other charges. do) charges do not exert forces on other charges.
Answer:
c) charges exert forces on other charges.
Explanation:
When two different materials are rubbed together, there is a transfer of electrons from one material to the other material so this causes one object to become positively charged and the other object is negatively charged so they will attract each other not repel each other. Charges exert forces on other charges i.e. opposite charges attract each other whereas similar charges repel each other so in both cases force are exerted on one another.
If Light is travels from air into pure water with an incident angle of 30°. What is the angle of refraction?
Explanation:
For air, n1 = 1.00003; for water, n2 = 1.3330
Given: θ2 = 30 degrees, then
θ1 = arcsin [(n2/n1) sin θ2]
= arcsin [(1.3330/1.0003) sin (40)]
= 58.93 degrees
Note that since, in this example, light is traveling from a medium of higher density (water; n2 = 1.3330) to a medium of lower density (air; n1 = 1.0003), then n2 > n1, and the angle of refraction (θ1) is larger than the angle of incidence (θ2), thus the light bends away from the normal (in this example, the vertical) as it leaves the water and enters the air.
Calculate the electric field at point A, located at coordinates (0 m, 12.0 m ). Give the x and y components of the electric field as an ordered pair. Express your answer in newtons per coulomb to three significant figures.
Answer:
The correct answer is "[tex](0,300\times 10^{-3} \ N/C)[/tex]".
Explanation:
The given problem seems to be incomplete. Please find the attachment of the complete query.
According to the question,
At point A, we have
⇒ [tex]E_x = \frac{k q_1}{d_1^2} Cos \theta_1 - \frac{k q_2}{d_2^2} Cos \theta_2[/tex]
or,
⇒ [tex]E_x = 9\times 10^9\times [\frac{6\times 10^{-9}}{15^2}\times \frac{9}{15}-\frac{8\times 10^{-9}}{20^2}\times \frac{16}{20} ][/tex]
[tex]=0[/tex]
and,
⇒ [tex]E_y = \frac{kq_1}{d_1^2}Sin \theta_1 +\frac{kq_2}{d_2^2}Sin \theta_2[/tex]
or,
⇒ [tex]E_y = 9\times 10^9\times [\frac{6\times 10^{-9}\times 12}{15^2\times 15}+ \frac{8\times 10^{-9}\times 12}{20^2\times 20} ][/tex]
[tex]=0.3 \ N/C[/tex]
the lamp cord is 85cm long and comprises cupper wire. Calculate the wire‘s resistance?
radius of a wire is 1.8mmm,Use value of resistivity for Cu as 1.75 × 10-8Ωm.
Answer:
R = 0.0015Ω
Explanation:
The formula for calculating the resistivity of a material is expressed as;
ρ = RA/l
R is the resistance
ρ is the resistivity
A is the area of the wire
l is the length of the wire
Given
l = 85cm = 0.85m
A = πr²
A = 3.14*0.0018²
A = 0.0000101736m²
ρ = 1.75 × 10-8Ωm.
Substitute into the formula
1.75 × 10-8 = 0.0000101736R/0.85
1.4875× 10-8 = 0.0000101736R
R = 1.4875× 10-8/0.0000101736
R = 0.0015Ω
A ring with an 18mm diameter falls off a scientist's finger into the solenoid in the lab. The solenoid is 25 cm long, 5.0 cm in diameter and has 1500 turns. When turned on, the current in the solenoid is increases linearly to 20 A in 1 second. What is the induced emf in the ring?
a) 2.0 x 10-5 v
b) 3.8 x 10-5 v
c) 1.2 x 10-3 v
d) 1.9 x 10-4 v
Answer:
the answer should be b) 3.8 x 10-5 v
Paramagnetism is closely associated with: A. the tendency of electron dipole moments to align with an applied magnetic field B. the force exerted by electron dipole moments on each other C. the exchange force between electrons D. the tendency of electron dipole moments to align opposite to an applied magnetic field
Answer:
the tendency of electron dipole moments to align with an applied magnetic field
Explanation:
Paramagnetism has to do with possession of unpaired electrons. Substances that possess unpaired electrons are said to be paramagnetic.
When an external magnetic field is applied to a paramagnetic substance, the magnetic field causes the electrons spins of the paramagnetic substance to align parallel to the field,which leads to a net attraction.
Hence, paramagnetism is closely associated with the tendency of electron dipole moments to align with an applied magnetic field.
Two resistances, R1 and R2, are connected in series across a 12-V battery. The current increases by 0.500 A when R2 is removed, leaving R1 connected across the battery. However, the current increases by just 0.250 A when R1 is removed, leaving R2 connected across the battery.
(a) Find R1.
Ω
(b) Find R2.
Ω
Answer:
a) R₁ = 14.1 Ω, b) R₂ = 19.9 Ω
Explanation:
For this exercise we must use ohm's law remembering that in a series circuit the equivalent resistance is the sum of the resistances
all resistors connected
V = i (R₁ + R₂)
with R₁ connected
V = (i + 0.5) R₁
with R₂ connected
V = (i + 0.25) R₂
We have a system of three equations with three unknowns for which we can solve it
We substitute the last two equations in the first
V = i ( [tex]\frac{V}{ i+0.5} + \frac{V}{i+0.25}[/tex] )
1 = i ( [tex]\frac{1}{i+0.5} + \frac{1}{i+0.25}[/tex] )
1 = i ( [tex]\frac{i+0.5+i+0.25}{(i+0.5) \ ( i+0.25) }[/tex] ) = [tex]\frac{i^2 + 0.75i}{i^2 + 0.75 i + 0.125}[/tex]
i² + 0.75 i + 0.125 = 2i² + 0.75 i
i² - 0.125 = 0
i = √0.125
i = 0.35355 A
with the second equation we look for R1
R₁ = [tex]\frac{V}{i+0.5}[/tex]
R₁ = 12 /( 0.35355 +0.5)
R₁ = 14.1 Ω
with the third equation we look for R2
R₂ = [tex]\frac{V}{i+0.25}[/tex]
R₂ =[tex]\frac{12}{0.35355+0.25}[/tex]
R₂ = 19.9 Ω
What computer measures physical quantities?
Answer:
Three Types of Computer The Computer are classified into three main types:: • Analog Computers • Digital Computers • Hybrid Computers (Analog + Digital) Analog Computers:: Analog Computer measures “Physical Quantities” for example Temperature, Voltage, Pressure, and Electric Current.
As a roller coaster car crosses the top of a 40-m-diameter loop-the-loop, its apparent weight (the normal force) is the same magnitude as the car's weight. What is the car's speed at the top?
Answer:
40 because if it is the same weight then there is no weight to make the ride slower so it 40
Explanation:
Two loudspeakers, 5.5 m apart and facing each other, play identical sounds of the same frequency. You stand halfway between them, where there is a maximum of sound intensity. Moving from this point toward one of the speakers, you encounter a minimum of sound intensity when you have moved 0.25 m . Assume the speed of sound is 340 m/s.
Required:
a. What is the frequency of the sound?
b. If the frequency is then increased while you remain 0.21 m from the center, what is the first frequency for which that location will be a maximum of sound intensity?
c.
Solution :
Let [tex]$d_1=\frac{5.5}{2}[/tex]
= 2.75 m
[tex]d_2 = 0.21 \ m[/tex]
And [tex]$d=|d_1-d_2|$[/tex]
[tex]$d=(d_1+d_2) - (d_1-d_2)$[/tex]
[tex]$d=(2.75+0.21) - (2.75-0.21)$[/tex]
[tex]$d = 2.96-2.54$[/tex]
[tex]d = 0.42 \ m[/tex]
a). At minimum,
[tex]$d=\frac{\lambda}{2}$[/tex]
[tex]$\lambda = 2d$[/tex]
= 2 x 0.42
= 0.84 m
Frequency, [tex]$\nu = \frac{v}{\lambda}$[/tex]
[tex]$=\frac{340}{0.84}$[/tex]
= 404.76 Hz
Therefore, the frequency of he sound, [tex]$\nu$[/tex] = 404.76 Hz
b). At maximum, λ = d = 0.42 m
Therefore, the frequency, [tex]$\nu = \frac{v}{\lambda}[/tex]
[tex]$=\frac{350}{0.42}$[/tex]
= 809.52 Hz
Choose the appropriate explanation how such a low value is possible given Saturn's large mass - 100 times that of Earth.
a. This low value is possible because the magnetic field of Saturn is so strong.
b. This low value is possible because the magnetic field of Saturn is so weak.
c. This low value is possible because the density of Saturn is so high.
d. This low value is possible because the density of Saturn is so low.
Answer:
Explanation:
That is an amazing fact.
The minus sign is what you have to pay attention to. The earth has a mass of 100 times that of Saturn. As someone on here once noted, Saturn has such a low density that it would float in water.
The answer is D
What improvements were made in measuring system with the introduction of standard units?
Answer:
Standard units are commonly used units of measurement, which help us measure length, height, weight, temperature, mass and more. These units are standardised, which means that everyone gets the same understanding of the size, weight and other properties of objects and things.
Explanation:
Which of the following statements about magnetism is TRUE?
a) The direction of the magnetic force on a current-carrying wire is parallel to the wire.
b) Magnetic poles always occur in pairs (N and S).
c) Magnetic field lines begin at south poles and end on north poles.
d) Moving charges do not experience a force in magnetic fields.
Convert 385k to temperature of
Answer:
233.33°F
Explanation:
(385K - 273.15) * 9/5 + 32 = 233.33°F
Suppose a 60-turn coil lies in the plane of the page in a uniform magnetic field that is directed out of the page. The coil originally has an area of 0.325 m2. It is stretched to have no area in 0.100 s. What is the magnitude (in V) and direction (as seen from above) of the average induced emf if the uniform magnetic field has a strength of 1.60 T
Answer:
emf = 312 V
Explanation:
In this exercise the electromotive force is asked, for which we must use Faraday's law
emf = [tex]- N \frac{d \Phi }{dt}[/tex]- N dfi / dt
Ф = B. A = B A cos θ
bold type indicates vectors.
They indicate that the magnetic field is constant, the angle between the normal to the area and the magnetic field is parallel by local cosine values 1
It also indicates that the area is reduced from a₀ = 0.325 me² to a_f = 0 in a time interval of ΔT = 0.100 s, suppose that this reduction is linear
emf = -N B [tex]\frac{dA}{dT}[/tex]
emf = - N B (A_f - A₀) / Dt
we calculate
emf = - 60 1.60 (0 - 0.325) /0.100
emf = 312 V
The direction of this voltage is exiting the page
A smooth circular hoop with a radius of 0.400 m is placed flat on the floor. A 0.325-kg particle slides around the inside edge of the hoop. The particle is given an initial speed of 8.50 m/s. After one revolution, its speed has dropped to 5.50 m/s because of friction with the floor.
(a) Find the energy transformed from mechanical to internal in the particle "hoop" floor system as a result of friction in one revolution.
(b) What is the total number of revolutions the particle makes before stopping? Assume the friction force remains constant during the entire motion.
Answer:
a) W = - 6.825 J, b) θ = 1.72 revolution
Explanation:
a) In this exercise the work of the friction force is negative and is equal to the variation of the kinetic energy of the particle
W = ΔK
W = K_f - K₀
W = ½ m v_f² - ½ m v₀²
W = ½ 0.325 (5.5² - 8.5²)
W = - 6.825 J
b) find us the coefficient of friction
Let's use Newton's second law
fr = μ N
y-axis (vertical) N-W = 0
fr = μ W
work is defined by
W = F d
the distance traveled in a revolution is
d₀ = 2π r
W = μ mg d₀ = -6.825
μ = [tex]\frac{ -6.825}{d_o \ mg}[/tex]
The total work as the object stops the final velocity is zero v_f = 0
W = 0 - ½ m v₀²
W = - ½ 0.325 8.5²
W = - 11.74 J
μ mg d = -11.74
we subtitle the friction coefficient value
( [tex]\frac{-6.8525 }{d_o mg}[/tex]) m g d = -11.74
6.825 [tex]\frac{d}{d_o}[/tex] = 11.74
d = 11.74/6.825 d₀
d = 1.7201 2π 0.400
d = 4.32 m
this is the total distance traveled, the distance and the angle are related
θ = d / r
θ = 4.32 / 0.40
θ = 10.808 rad
we reduce to revolutions
θ = 10.808 rad (1rev / 2π rad)
θ = 1.72 revolution
if a projectile travels in the air for 6 seconds when does the projectile reach its highest point
This question deals with projectile motion, which is a motion on both the x-axis and y-axis, simultaneously. The total time of flight of the projectile trajectory is given, while the time to reach the highest point of the projectile is required to be found.
The projectile will reach the highest point in "3 seconds".
The total time of flight of a projectile is the time during which the projectile remains in the air. For a projectile motion that ends up on the same horizontal level, from where it started, the time to reach the highest point, is equal to half of the total time of flight.
In other words, the projectile motion takes the same time, to go from the starting level to the highest point (i.e upward motion), as the time taken to reach the starting level from the highest point (i.e downward motion).
[tex]t = \frac{1}{2}T[/tex]
where,
t = time to reach the highest point = ?
T = total time of flight = 6 seconds
Therefore,
[tex]t - \frac{1}{2}(6\ seconds)[/tex]
t = 3 seconds
Learn more about the projectile motion here:
https://brainly.com/question/20689870?referrer=searchResults
A particle moves along X-axis in such a way that X-coordinate varies with time according to expression x= 2-5t+6t2 meters, Calculate the initial velocity of the particle?
A 5
v= dt/ dx =−5+12t
Initial velocity means at t=0, which is −5+0=−5.
Thus, −v=5n
As the speed of a particle approaches the speed of light, the momentum of the particle Group of answer choices approaches zero. decreases. approaches infinity. remains the same. increases.
Answer:
approaches infinity
Explanation:
There are two momentums, the classical momentum which is equal to the product of mass and velocity, and the relativistic momentum, the one we should look at when we work with high speeds, and this happens because massive objects have a speed limit, in this case, we are approaching the speed of light, so we need to work with the relativistic momentum instead of the classical momentum.
The relativistic momentum can be written as:
[tex]p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]
where
u = speed of the object relative to the observer, in this case we have that u tends to c, the speed of light.
m = mass of the object
c = speed of light.
So, as u tends to c, we will have:
[tex]\lim_{u \to c} p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]
Notice that when u tends to c, the denominator on the first term tends to zero, thus, the relativistic momentum of the object will tend to infinity.
Then the correct option is infinity, as the particle speed approaches the speed of light, the relativistic momentum of the particle tends to infinity.
A kind of variable that a researcher purposely changes in investigation is
Answer:
independent variable
Explanation:
Which term defines seeking some way of achieving a goal by overcoming obstacles or finding an answer to a question?
Answer:
Problem solving
hope this helps :)
basic source of magnetism is a) charged particles alone b)Movement of charged particles c) Magnetic dipoles d)magnetic domains
Answer:
C . Magnetic dipoles is the correct
Answer:
b). movement of charged particles.
Explanation:
These charges create the nagnetic dipoles.
A 5.85-mm-high firefly sits on the axis of, and 13.7 cm in front of, the thin lens A, whose focal length is 5.01 cm. Behind lens A there is another thin lens, lens B, with focal length 25.9 cm. The two lenses share a common axis and are 62.5 cm apart. 1. Is the image of the firefly that lens B forms real or virtual?
a. Real
b. Vrtual
2. How far from lens B is this image located (expressed as a positive number)?
3. What is the height of this image (as a positive number)?
4. Is this image upright or inverted with respect to the firefly?
a. Upright
b. Inverted
Answer:
1. The image is real
2. 5.85
3. h' = 3.05 mm
4. The image is upright
Explanation:
1. Start with the first lens and apply 1/f = 1/p + 1/q
1/5.01 = 1/13.7 + 1/q
q = 7.90 cm
Since that distance is behind the first lens, and the second lens is 62.5 cm behind the first lens, that distance is 62.5 - 7.90 = 54.6 cm in front of the second lens, and becomes the object for that lens, thus,
1/25.9 = 1/54.6 + 1/q
q = 49.3 cm behind the second lens
Using that information, since q is positive, the image is real
2. Also, using that information, you have the second answer, which is 49.3 cm
The height can be found from the two magnifications.
m = -q/p
m1 = -7.9/13.7 = -.577
m2 = -49.3/54.6 = -.903
Net m = (-.577)(-.903) = .521
Then, m = h'/h
.521 = h'/5.85
3. h' = 3.05 mm
4. For the fourth answer, since the overall magnification is positive, the final image is upright
Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound
The question is incomplete. The complete question is :
Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound in the room is 340 m/s.
What is the frequency of the sound?
Solution :
Given :
The distance between the two loud speakers, [tex]d = 1.8 \ m[/tex]
The speaker are in phase and so the path difference is zero constructive interference occurs.
At the point [tex]D[/tex], the speakers are out of phase and so the path difference is [tex]$=\frac{\lambda}{2}$[/tex]
Therefore,
[tex]$AD-BD = \frac{\lambda}{2}[/tex]
[tex]$\sqrt{(1.8)^2+(3)^2-3} =\frac{\lambda}{2}$[/tex]
[tex]$\lambda = 2 \times 0.4985$[/tex]
[tex]$\lambda = 0.99714 \ m$[/tex]
Thus the frequency is :
[tex]$f=\frac{v}{\lambda}$[/tex]
[tex]$f=\frac{340}{0.99714}$[/tex]
[tex]f=340.9744[/tex] Hz