Complete Question
Questions Diagram is attached below
Answer:
* [tex]W=1142.86Joule[/tex]
* [tex]Q=997.7J[/tex]
* [tex]H=2140.5J[/tex]
Explanation:
From the question we are told that:
Temperature [tex]T=337K[/tex]
Pressure [tex]P=(60-55)Pa*10^5[/tex]
Volume[tex]V=(1.6-1.4)m^3*10^{-3}[/tex]
Generally the equation for gas Constant is mathematically given by
[tex]\frac{P_2}{P_1}=\frac{V_1}{V_2}^n[/tex]
[tex]\frac{55*10^5}{60*10^5}=\frac{1.4*10^{-3}}{1.6*10^{-3}}^n[/tex]
[tex]n=0.65[/tex]
Therefore
Work-done
[tex]W=\int{pdv}[/tex]
[tex]W=\frac{55*10^5*1.6*10^{-3}*60*10^5*1.4*10^{-3}}{1-0.65}[/tex]
[tex]W=1142.86Joule[/tex]
Generally the equation for internal energy is mathematically given by
[tex]Q=mC_vdT\\\\Q=\frac{3*1*3.314*16}{1.4-1}[/tex]
[tex]Q=997.7J[/tex]
Therefore
[tex]H=Q+W[/tex]
[tex]H=997.7J-11.42.9[/tex]
[tex]H=2140.5J[/tex]
An ordinary gasoline can measuring 30.0 cm by 20.0 cm by 15.0 cm is evacuated with a vacuum pump.
1a. Assuming that virtually all of the air can be removed from inside the can, and that atmospheric pressure is 14.7 psi, what is the total force (in pounds) on the surface of the can?
1b. Do you think that the can could withstand the force?
Answer:
Explanation:
From the given information:
The surface area of the can = (30 × 20 × 2) +(20× 15 × 2) +(30 × 15 × 2)
= 1200 + 600 + 900
= 2700 cm²
Since 1 inch² = 0.155 inch²
The surface area in inches² = 2700 × 0.155 inch²
= 418.5 inches²
The total force can be determined by using the expression:
Force = Pressure ×Area
Force = 14.7 psi × 418.5 inches²
Force = 6151.95 lbs
Yes, the gasoline can will be able to withstand the force.
How many oxygen atoms are there in 0.25 mole of CO2?
Answer:
It is known that 1 mol of a molecule contains 6.023×1023 6.023 × 10 23 number of molecules. So, 0.25 moles of CO2 C O 2.
The correct option for the given question about Mole Concept is Na / 2 atom of oxygen.
What is mole?In chemistry, a mole is a unit. A mole of a substance is the mass of the substance containing precisely 12 gram of the same number of atoms as 12C.The mole is the SI unit used to measure a substance's quantity. It has the symbol mol.
How to solve this question?
In 1 mole number of molecules of CO₂ = Na (Avagadro Number)
In 0.25 mole number of molecules of CO₂ = 0.25 × Na molecules
In 1 molecule number of oxygen atom = 2 atom
In 0.25 × Na molecules number of oxygen atom = 2 × 0.25 × Na atom
In 0.25 × Na molecules number of oxygen atom = 0.5 × Na atom
So in 0.25 mole of CO₂ number of oxygen atom = Na / 2 atom
Thus we can conclude that in 0.25 mole of CO₂ number of oxygen atom will be Na / 2, where Na is Avagadro Number.
Learn more about Mole Concept here:
https://brainly.com/question/16488605
#SPJ2
write the chemistry of Epsom salt
6) Hydrogen gas can be generated from the reaction between aluminum metal and hydrochloric acid:
2 Al(s) + 6 HCl(aq) + 2 AICI3, (aq) + 3 H2(g)
a. Suppose that 3.00 grams of Al are mixed with excess acid. If the hydrogen gas produced is directly collected
into a 850 mL glass flask at 24.0 °C, what is the pressure inside the flask (in atm)?
b. This hydrogen gas is then completely transferred from the flask to a balloon. To what volume (in L) will the
balloon inflate under STP conditions?
c. Suppose the balloon is released and rises up to an altitude where the temperature is 11.2 °C and the pressure is
438 mm Hg. What is the new volume of the balloon (in L)?
Stoichiometry refers to the relationship between the moles of reactants and products.
This question must be solved using both stoichiometry and the gas laws
The reaction equation is;
2 Al(s) + 6 HCl(aq) --------> 2 AICI3, (aq) + 3 H2(g)
Using stoichiometryNumber of moles of Al = 3g/27g/mol = 0.11 moles
According to the reaction equation;
2 moles of Al yields 3 moles of H2
0.11 moles of Al yields 0.11 * 3/2 = 0.165 moles
Using the gas lawsFrom the ideal gas equation;
PV=nRT
P = ?
n= 0.165 moles
V = 0.85 L
T = 297 K
R = 0.082 atmLK-1mol-1
P= nRT/V
P = 0.165 * 0.082 * 297/0.85
P= 4.73 atm
Under STP conditions;P1 = 4.73 atm
T1 = 297 K
V1 = 0.85 L
P2 = 1 atm
T2 =273 K
V2 =?
From the general gas equation;P1V1/T1 = P2V2/T2
P1V1T2 = P2V2T1
V2 = P1V1T2/P2T1
V2 = 4.73 * 0.85 * 273/1 * 297
V2 = 3.69 L
P1 = 760 mmHg
T1 = 273 K
V1 = 3.69
P2 = 438 mm Hg
T2 = 284.2 K
V2 =?
P1V1/T1 = P2V2/T2
P1V1T2 = P2V2T1
V2 = P1V1T2/P2T1
V2 = 760 * 3.69 * 284.2/438 *273
V2 = 797010.48/119574
V2= 6.67 L
https://brainly.com/question/1190311
convert 8.4 • 10^16 molecules of CO2 to moles
Answer:
0.00000000000000084
Explanation:
If we increase the temperature of the reaction that occurs in plants to create sugar. What direction does the equilibrium shift....
- Products
- No change
- Reactants
- Plants are not capable of this
The reaction used to produce sugar in plants is Photosynthesis,
6CO₂ + 6H₂O + heat ⇆ C₆H₁₂O₆ + 6O₂↑
we can see that this reaction is endothermic, it absorbs heat to occur
If we were to add more heat or increase the temperature, the left side of the equilibrium will be able to react much more, which would produce more glucose (aka sugar)
Hence increasing the temperature will shift the equilibrium to the right or towards the Products
Answer:
Explanation:
The reaction that occurs in plants to create sugar can be represented by the following equation:
6 CO2 + 6 H2O ↔ C6H12O6 + 6 O2
It is called photosynthesis because the reaction requires light energy for the plant. The reaction is controlled by enzyme within the plant. An increase in temperature will increase the collisions between enzyme and reactants; shifting the equilibrium towards the products, sugar and oxygen.
3 molecules NaOH determine the amount of grams
Answer:
In three mocelus 0.0001 gram.
Nitric acid can be formed in two steps from the atmospheric gases nitrogen and oxygen, plus hydrogen prepared by reforming natural gas. In the first step, nitrogen and hydrogen react to form ammonia: N2 (g) + 3H2 (g) â 2NH3 (g) =ÎHâ92.kJ In the second step, ammonia and oxygen react to form nitric acid and water:
NH3 (g) + 2O2 (g) â HNO3 (g) + H2O (g) =ÎHâ330.kJ
Required:
Calculate the net change in enthalpy for the formation of one mole of nitric acid from nitrogen, hydrogen and oxygen from these reactions.
Answer:
-376 kJ
Explanation:
The first step equation:
[tex]\mathsf{N_{2(g)} + 3H_2{(g)} \to 2NH_3{(g)} \ \ \ \Delta H = -92\ kJ}[/tex] ---- (1)
The second step equation:
[tex]\mathsf{NH_{3(g)} + 2O_2{(g)} \to HNO_3{(g)} +H_2O_{(g)} \ \ \ \Delta H = -330\ kJ}[/tex] ---- (2)
To determine the enthalpy of formation for 1 mole of HNO₃ (nitric acid), we have the following.
From the above equations; let multiply equation (1) by 1 and equation (2) by 2.
[tex]\mathsf{N_{2(g)} + 3H_2{(g)} \to 2NH_3{(g)} \ \ \ \Delta H = -92\ kJ}[/tex] ---- (3)
[tex]\mathsf{2NH_{3(g)} + 4O_2{(g)} \to 2HNO_3{(g)} +2H_2O_{(g)} \ \ \ \Delta H = 2(-330)\ kJ}[/tex] ----- (4)
adding the above two equations, we have:
[tex]\mathsf{N_{2(g)} + 3H_2{(g)}+ 2NH_{3(g)} + 4O_{2(g)} \to 2HNO_{3(g)} + 2NH_3{(g)} +2H_2O_{(g)} \ \ \ \Delta H = (-660 \ kJ -92\ kJ)}[/tex][tex]\mathsf{N_{2(g)} + 3H_2{(g)} + 4O_{2(g)} \to 2HNO_{3(g)} +2H_2O_{(g)} \ \ \ \Delta H = (-752 \ kJ)}[/tex]
Now, from the recent equation, we have:
2 moles of nitric acid = -752 kJ
∴
1 mole of nitric acid will be: = (1 mole × (-752 kJ)) ÷ 2 moles
1 mole of nitric acid will be: = -376 kJ
Ammonium phosphate NH43PO4 is an important ingredient in many fertilizers. It can be made by reacting phosphoric acid H3PO4 with ammonia NH3. What mass of ammonium phosphate is produced by the reaction of 5.5g of phosphoric acid
Answer:
8.3 g
Explanation:
Step 1: Write the balanced equation
H₃PO₄ + 3 NH₃ ⇒ (NH₄)₃PO₄
Step 2: Calculate the moles corresponding to 5.5 g of H₃PO₄
The molar mass of H₃PO₄ is 97.99 g/mol.
5.5 g × 1 mol/97.99 g = 0.056 mol
Step 3: Calculate the moles of (NH₄)₃PO₄ produced
The molar ratio of H₃PO₄ to (NH₄)₃PO₄is 1:1. The moles of (NH₄)₃PO₄ produced are 1/1 × 0.056 mol = 0.056 mol.
Step 4: Calculate the mass corresponding to 0.056 moles of (NH₄)₃PO₄
The molar mass of (NH₄)₃PO₄ is 149.09 g/mol.
0.056 mol × 149.09 g/mol = 8.3 g
Assume you have 4 solids (A, B, C and D) of similar mass. Which of these requires the greatest energy input to melt?
polar covalent
covalent network
ionic compound
nonpolar covalent
The solid that require the greatest energy input to melt by mass is the option;
Covalent network
Reason for the above answer is as follows;
The elementary particles of a solid are held together by bonds that require
an input of energy to unlock, and once broken, the particles are then able
to change location within their containing vessels with less restrictions
Types of bonds
Polar covalent molecular solids have the following characteristics;a) Soluble in water b) Low melting point, b) Conduct electricity
Solids that are made up of a covalent network have the following characteristicsa) High melting point temperature b) Non conductive of electricity c) Not soluble in water
Solids of ionic compounds have the following characteristics;a) High melting point temperature b) The liquid state and solution
conducts electricity c) Soluble in water
Solids that have nonpolar covalent bonds have;a) Low melting point b) Normally in the gaseous or liquid state b) Not water soluble
Therefore, the covalent network, and the solids ionic compounds require the most energy to melt, however, the strength of the ionic bond in an ionic compound is a factor the charges present and the sizes of the atom, while
the covalent network solid, are combined to form essentially as a single
molecule and therefore require the greatest heat energy input break the bonds of the molecule down in order to melt
Learn more about the properties of the different types of bonds here;
https://brainly.com/question/13510199
https://brainly.com/question/21628972
https://brainly.com/question/14823280
Which combination of reagents used in the indicated order with benzene will give m-nitropropylbenzene? a. 1) CH3CH2CH2Cl/AlCl3, 2) HNO3/H2SO4 b. 1) HNO3/H2SO4, 2) CH3CH2CH2Cl/AlCl3 c. 1) CH3CH2CH2Cl/AlCl3, 2) HNO3/H2SO4, 3) Zn/HCl d. 1) HNO3/H2SO4, 2) CH3CH2CH2Cl/AlCl3, 3) Zn/HCl
Answer:
1) HNO3/H2SO4, 2) CH3CH2CH2Cl/AlCl3
Explanation:
Benzene is a stable aromatic compound hence it undergoes substitution rather than addition reaction.
When benzene undergoes substitution reaction, the substituent introduced into the ring determines the position of the incoming electrophile.
If I want to synthesize m-nitropropylbenzene, I will first carry out the nitration of benzene using HNO3/H2SO4 since the -nitro group is a meta director. This is now followed by Friedel Craft's alkykation using CH3CH2CH2Cl/AlCl3.
In order to complete the reaction of hexyl magnesium bromide with acetone, what next step needs to be done.
a. Fractional Distillation.
b. Vacuum filtration.
c. Aqueous workup.
d. Crystallization.
Answer:
Aqueous workup.
Explanation:
The reaction of hexyl magnesium bromide with acetone yields a tertiary alcohol. There is an organic phase and an aqueous phase.
Aqueous workup is the process of recovering the pure tertiary alcohol from the organic phase of the system.
Hence, in order to complete the reaction of hexyl magnesium bromide with acetone, aqueous workup is required.
Activation energy is:
A. The energy needed to begin breaking the bonds of reactants.
B. None of these.
C. The maximum amount of energy reactants can hold.
D. The energy needed to begin breaking the bonds of products.
Activation energy is the energy needed to begin breaking the bonds of reactants. Hence, option A is correct.
What is activation energy?Activation energy is defined as the minimum amount of energy necessary to initiate a chemical reaction.
Hence, activation energy is the energy needed to begin breaking the bonds of reactants.
Learn more about activation energy here:
https://brainly.com/question/2410158
#SPJ5
Define atomic numbers and mass numbers
Answer:
1). Atoms of each element contain a characteristic number of protons. In fact, the number of protons determines what atom we are looking at (e.g., all atoms with six protons are carbon atoms); the number of protons in an atom is called the atomic number.
2) In contrast, the number of neutrons for a given element can vary. Forms of the same atom that differ only in their number of neutrons are called isotopes.
3) Together, the number of protons and the number of neutrons determine an element’s mass number: mass number = protons + neutrons. If you want to calculate how many neutrons an atom has, you can simply subtract the number of protons, or atomic number, from the mass number.
increasing temperature increases:
1:Enthalpy
2:Free Energy
3:Entropy
4:Specific heat
Answer:
2 :free energy
Explanation:
I hope it is fine answer for you ☺️☺️☺️
26. Which group in the periodic table contains
an element that can form a blue sulfate
a
compound?
(1) 1
(2)
(3) 11
(4) 17
Answer:
█████████████████
█░░░░░░░░░░░░░░░█
█░░░░░░░░░░░░░░░█
█░░████░░░████░░█
█░░████░░░████░░█
█░░░░░░███░░░░░░█
█░░░░███████░░░░█
█░░░░███████░░░░█
█░░░░██░░░██░░░░█
█░░░░░░░░░░░░░░░█
█████████████████
───█░░░░░░░░░█───
───█░░░░░░░░░█───
───█░░░░░░░░░█───
───█░░░░░░░░░█───
───█░░░░░░░░░█───
───█░░░░░░░░░█───
───█░░░░░░░░░█───
───█░░░░░░░░░█───
───█░░░░░░░░░█───
───█░░░░░░░░░█───
───█░░░░░░░░░█───
█████████████████
█░░░░░░░█░░░░░░░█
█░░░░░░░█░░░░░░░█
█░░░░░░░█░░░░░░░█
█░░░░░░░█░░░░░░░█
Answer:
Option (3) 11
Explanation:
Elements in Group 11 of the periodic table are called Noble Metals.Noble metals have high resistance to oxidation and low chemical reactivity.Noble metal includes Gold (Au), Silver (Ag), Copper (Cu).Copper forms a blue sulfate when reacts with Sulphuric Acid.Formula of Copper Sulfate : CuSO4.Since, Copper belongs to the Group 11 elements of the periodic table hence, option (3) is the right answer.For more information:
https://brainly.com/question/569321
LAST ATTEMPT! Covalent compound naming ! !!
Answer:
Name the non-metal furthest to the left on the periodic table by its elemental name.
Name the other non-metal by its elemental name and an -ide ending.
Use the prefixes mono-, di-, tri-.... to indicate the number of that element in the molecule.
im prolly wrong
When hydrogen gas reacts with oxygen gas, water vapour is formed according to the
reaction 2H2 + O2 2H2O. If 3.00 mol of hydrogen gas react with 3.00 mol
of oxygen gas, which reactant will be the reactant in excess?
Explanation:
here's the answer to the question
What is the molarity of a solution that contains 0.75 mol Naci in 3.0 L of solution? Select one: O a. 4.0 M O b. 2.3 M O d. 3.8 M O d. 0.25 M Clear my choice
Answer:
[tex]\boxed {\boxed {\sf D. \ 0.25 \ M}}[/tex]
Explanation:
Molarity is a measure of concentration in moles per liter.
[tex]molarity= \frac{moles \ of \ solute}{ liters \ of \ solution}[/tex]
The solution contains 0.75 moles of sodium chloride and has a volume of 3.0 liters.
moles of solute = 0.75 mol NaCl liters of solution = 3.0 LSubstitute these values into the formula.
[tex]molarity= \frac{ 0.75 \ mol \ NaCl}{3.0 \ L}[/tex]
[tex]molarity= 0.25 \ mol \ NaCl/L[/tex]
Molarity has the molar (M) as its unit. 1 molar is equal to 1 mole per liter.
[tex]molarity= 0.25 \ M \[/tex]
The molarity of the solution is 0.25 Molar and Choice D is correct.
Which condition is usually associated with low air pressure systems?
Answer:
clouds and precipitation that minimize temperature changes throughout the day
Explanation:
Which of the following is a reduction half-reaction?
Solution : An oxidation reduction (redox) reaction is a type of chemical reaction that involves a transfer of electrons between tow species an oxidaion reductin reaction is any chemical reaction in which the oxidation number of a molecule atom or ion changes by gaining or losing an electron
4) Calculate the percentage by
mass of oxygen in Pb(NO3)2
A) 193
B20
145
Answer:
im getting 331.23
Explanation:
Element Number Mass Percet Composition
O 6 16.00 28.9828819853274
N 2 14.01 8.45937867946744
Pb 1 207.21 62.5577393352051
Choose the compound below that contains at least one polar covalent bond, but is nonpolar.
a. SiF4
b. SeF4
c. HCl
d. ICl3
e. Both SiF4 and ICl3 are nonpolar and contain a polar covalent bond.
Answer:
HCl contain a polar covalent bond because H is more electropositive than Cl and Cl is more electronegative than H, resulting in a dipole moment
An analytical chemist is titrating of a solution of benzoic acid with a solution of . The of benzoic acid is . Calculate the pH of the acid solution after the chemist has added of the solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of solution added.
The question is incomplete. The complete question is :
An analytical chemist is titrating 148.9 mL of a 1.100 M solution of benzoic acid [tex]$HC_6H_5CO_2$[/tex] with a 0.3600 M solution of KOH. The [tex]pK_a[/tex] of benzoic acid is 4.20. Calculate the pH of the acid solution after the chemist has added 232.0 mL of the KOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of KOH solution added.
Solution :
Number of moles of [tex]$C_6H_5OCOOH$[/tex] [tex]$=148.9 \ mL \times \frac{L}{1000\ mL} \times \frac{1.100 \ mol}{L}$[/tex]
= 0.16379 mol
Number of moles of NaOH added [tex]$=232.0 \ mL \times \frac{L}{1000\ mL} \times \frac{0.3600 \ mol}{L}$[/tex]
= 0.08352 mol
ICE table :
[tex]C_6H_5OCOOH \ \ \ + \ \ \ OH^- \ \ \ \rightarrow \ \ C_6H_5OCOO^- \ \ \ \ + \ \ H_2O[/tex]
I (mol) 0.16379 0.08352 0
C (mol) -0.08352 -0.08352 +0.08352
E (mol) 0.08027 0 0.08352
Total volume = (148.9 + 232) mL
= 380.9 mL
= 0.3809 L
Concentration of [tex]$C_6H_5OCOOH, [C_6H_5OCOOH]$[/tex] [tex]$=\frac{0.08027 \ mol}{0.3809 \ L}$[/tex]
= 0.211 M
Concentration of [tex]$C_6H_5OCOO^- , [C_6H_5OCOO^-] =\frac{0.08352 \ mol}{0.3809 \ L}[/tex]
= 0.219 M
[tex]pK_a[/tex] of [tex]C_6H_5OCOOH = 4.20[/tex]
According to Henderson equation,
[tex]$pH = pK_a + \log \frac{[C_6H_5OCOO^-]}{[C_6H_5OCOOH]}[/tex]
[tex]$=4.20 + \log \frac{0.219}{0.211}$[/tex]
= 4.22
Therefore, the pH of the acid solution is 4.22
When comparing Be2 and H2:
I. Be2 is more stable because it contains both bonding and antibonding valence electrons.
II. H2 has a higher bond order than Be2.
III. H2 is more stable because it only contains 1s electrons.
IV. H2 is more stable because it is diamagnetic, whereas Be2 is paramagnetic
a. II,III,IV
b.II,III
c.III only
d.I,II
e.III,IV.
Answer:
The answer is "Option b".
Explanation:
H2 does have bond energy of 1, while Be2 has a covalent bond of zero. Be2 has eight electrons, each of which dwells in a distinct orbital. As just a result, four of them are linked molecular orbitals and two are antibonding molecular orbitals, respectively. As just a result, this molecule is unstable. This chemical orbital, with a bond order of 1, has just two electrons. As a result, it is a very solid substance. H2's bond length is higher than Be2's. Since it only has one electron, H2 is more stable than that of other compounds.
Please write out the balanced chemical equations for the following
reactions.
**Ensure you write the states of the reactants and products.**
• zirconium chloride reacts with scandium dichromate
Answer: Super idol
Explanation:
chinese malapoks
What is the job of cellular respiration?
Answer:
to break down sugar in the presence of oxygen to release energy in the form of ATP
Explanation: i just finished this chapter of the class
Of these gases, which has the fastest-moving molecules (on average) at a given temperature?
-N2
-They all have the same average speed.
-Cl2
-HCl
Which gas molecules have the highest average kinetic energy at a given temperature?
-They all have the same average kinetic energy.
-Cl2
-HCl
-N2
Answer:
a) N2
b) They all have the same average kinetic energy.
Explanation:
At a given temperature, the speed of a gas molecule depends on its relative molecular mass. The heavier the gas, the lesser its average velocity at a given temperature. On that basis, N2 molecules are the fastest moving gas molecules.
At a particular temperature, all gases have the same average kinetic energy.
what is wrong with the statement? "because there are no common factors in the molecular formula, k2co3 is also the empirical formula of potassium carbonate"
The empirical formula is the same as the molecular formula because the ratio of atoms in the compound correspond to the number of atoms of each element in the compound.
The empirical formula of a compound shows the ratio of atoms of each element in the compound while the molecular formula shows the number of atoms of each element in the compound.
For the compound, K2CO3, the empirical formula is the same as the molecular formula because the ratio of atoms in the compound correspond to the number of atoms of each element in the compound. It has nothing to do with common factors.
Learn more: https://brainly.com/question/11588623
Element X has an electron configuration of 2-8-2. This element will combine with the oxide ion to form a compound with the formula