Using the molarity of vinegar, calculate the mass percent of acetic acid in the original sample. Assume the density of vinegar is 1.00 g/mL. (The formula for acetic acid is C2H4O2).

Answers

Answer 1

Answer:

5.37% w/w is the mass percent of vinegar assuming a molarity of 0.8935mol/L

Explanation:

Assuming the molarity of vinegar is 0.8935mol/L:

Mass percent is defined as 100 times the ratio between mass of solute (In this case, acetic acid), and the mass of the solution

To solve this question we need to find the mass of acetic acid from the moles using the molar mass and the mass of the solution from the volume in liters using the density:

Mass Acetic acid -Molar mass: 60.052g/mol-

0.8935mol * (60.052g / mol) = 53.656g Acetic Acid

Mass Solution:

1L = 1000mL * (1.00g/mL) = 1000g Solution

Mass Percent:

53.656g Acetic Acid / 1000g Solution * 100 =

5.37% w/w is the mass percent of vinegar assuming a molarity of 0.8935mol/L
Answer 2

The mass percent of acetic acid in the original sample of vinegar of molarity 0.8935mol/L is 5.37% w/w.

How do we calculate the mass percent?

Mass percent of any solute present in any solution will be calculated as the:

Mass % of solute = (mass of solute / mass of solution) × 100

Let the molarity of vinegar = 0.8935mol/L

Means 0.8935 moles of vinegar present in the 1 liter of the solution.

Now we calculate mass from moles as:

n = W/M, where

W = required mass

M = molar mass = 60.052g /mol

W = (0.8935mol)(60.052g/mol) = 53.656g

Mass of solution = 1L = 1000mL×(1.00g/mL) = 1000g Solution

Then the mass % of acetic acid:

Mass % = (53.656g / 1000g) × 100 = 5.37% w/w

Hence the required % mass is 5.37% w/w.

To know more about mass percent, visit the below link:
https://brainly.com/question/26150306


Related Questions

When 1 mole of CO(g) reacts with H2O(l) to form CO2(g) and H2(g) according to the following equation, 2.80 kJ of energy are absorbed. CO(g) + H2O(l)CO2(g) + H2(g) Is this reaction endothermic or exothermic? _________ What is the value of q? kJ

Answers

Answer: Endothermic, 2.80 kJ

Explanation

Since this reaction absorbs heat, it is endothermic.

The energy absorbed per mole CO is 2.80 kJ and this reaction is already balanced. q= 2.80 kJ

Hope this helps:)

The functional groups in an organic compound can frequently be deduced from its infrared absorption spectrum.

a. True
b. False

Answers

Answer:

a. True

Explanation:

The main information that gives an infrared absorption spectrum is the type of functional groups that are present in an organic compound. The infrared (IR) spectroscopy is based on the fact that functional groups absorb light in the IR region of the electromagnetic spectrum (approximately at 2,500-16,000 nm) and induces a vibrational excitation of the covalently bonded atoms in the group. The vibration of the atoms can be of different types, such as stretching, bending, etc. Each functional group (such as the carbonyl group) in an organic compound absorbs at a specific IR frequency so they can be distinguished from an IR spectrum.

Aspirin that has been stored for a long time may give a vinegar like odour and give a purple colour with FeCl3. What reaction would cause this to happen
?.

Answers

Answer:

See explanation

Explanation:

The IUPAC name of aspirin is 2-Acetoxybenzoic acid. It is composed of an acetoxy moiety and a benzoic acid moiety.

The compound can be hydrolysed under prolonged storage conditions to yield acetic acid which causes the vinegar like odour.

Also, one of the products of this hydrolysis bears a phenol group which reacts with FeCl3 to give a purple color.

Which is a statement of cell theory? All cells are made up of living molecules. All plants are made of cells. All animals are made of cells. All cells are produced from other cells.

Answers

Answer:

all cells are produced from other preexisting cells through cell division

9. Discuss the general trend in Chemical Properties of the Representative Elements

Answers

Answer:

Elements in the same period show trends in atomic radius, ionization energy, electron affinity, and electronegativity.

who much the velocity of a body when it travels 600m in 5 min​

Answers

Answer:

2 m/s

Explanation:

Applying the formulae of velocity,

V = d/t............. Equation 1

Where V = Velocity of the body, d = distance, t = time

From the question,

Given: d = 600 m, t = 5 minutes = (5×60) = 300 seconds.

Substitute these values into equation 1

V = 600/300

V = 2 m/s.

Hence the velocity of the body when it travels is 2 m/s

explain why it is important not to correct any gas from the first few seconds of the experiment​

Answers

Answer:

gu kha fuschhehdjdvdbeodbr

Give the change in condition to go from a gas to a solid. Group of answer choices cool or increase pressure cool or reduce pressure increase heat or reduce pressure increase heat or increase pressure none of the above

Answers

Answer:

cool or increase pressure

Explanation:

For a gas to form solid. There must be reduced heat and pressure. The deposition of gas into solid occurs through the removal of thermal energy. The air looses thermal energy and changes into solid.

Cathodic protection of iron involves using another more reactive metal as a sacrificial anode. Classify each of the following metals by whether they would or would not act as a sacrificial anode to iron under standard conditions.

a. Ag
b. Mg
c. Cu
d. Pb
e. Sn
f. Zn
g. Au

Answers

Answer:

a. Ag ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

b. Mg ---> can serve as a sacrificial anode for iron because it is higher than iron in the reactivity series. Hence, it is more reactive than iron.

c. Cu ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

d. Pb ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

e. Sn ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

f. Zn ---> can serve as a sacrificial anode for iron because it is higher than iron in the reactivity series. Hence, it is more reactive than iron.

g. Au ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

Explanation:

Cathodic protection of iron involves using another more reactive metal as a sacrificial anode. The reactivity series of metals arranges metals based on decreasing order of reactivity. The more reactive metals are found higher up in the series while the least reactive metals are found at the lower ends of the series. Thus, metals above iron in the reactivity series can serve as sacrificial anodes by protecting against corrosion, while those lower than iron cannot.

Based on the reactivity series, the following metals can be classified as either a sacrificial anode for iron or not:

a. Ag ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

b. Mg ---> can serve as a sacrificial anode for iron because it is higher than iron in the reactivity series. Hence, it is more reactive than iron.

c. Cu ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

d. Pb ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

e. Sn ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

f. Zn ---> can serve as a sacrificial anode for iron because it is higher than iron in the reactivity series. Hence, it is more reactive than iron.

g. Au ---> cannot serve as a sacrificial anode for iron because it is lower than iron in the reactivity series. Hence, it is less reactive than iron.

At 445oC, Kc for the following reaction is 0.020. 2 HI(g) <--> H2 (g) + I2 (g) A mixture of H2, I2, and HI in a vessel at 445oC has the following concentrations: [HI] = 1.5 M, [H2] = 2.50 M and [I2] = 0.05 M. Which one of the following statements concerning the reaction quotient, Qc, is TRUE for the above system?
a. Qc = Kc; the system is at equilibrium.
b. Qc is less than Kc; more H2 and I2 will be produced.
c. Qc is less than Kc; more HI will be produced.
d. Qc is greater than Kc; more HI will be produced.

Answers

Explanation:

The given balanced chemical equation is:

[tex]2 HI(g) <--> H_2 (g) + I_2 (g)[/tex]

The value of Kc at 445oC is 0.020.

[HI]=1.5M

[H2]=2.50M

[I2]=0.05M

The value of Qc(reaction quotient ) is calculated as shown below:

Qc has the same expression as the equilibrium constant.

[tex]Qc=\frac{[H_2][I_2]}{[HI]^2} \\Qc=(2.50Mx0.05M)/(1.5M)^2\\Qc=0.055[/tex]

Qc>Kc,

Hence, the backward reaction is favored and the formation of Hi is favored.

Among the given options, the correct answer is option d. Qc is greater than Kc; more HI will be produced.

If a hydrogen of an alkane is replaced by NH, the compound becomes_________

a. alcohol

b. carboxylic acid

c. phenol

d. amine​

Answers

Answer:

d. amine.

It becomes an amine.

Explanation:

With general formular

[tex]{ \bf{primary \: amine :R - NH _{2}}} \\ { \bf{secondary \: amine : R {}^{i} - NH - R}} \\ { \bf{tertiary \: amine :R {}^{ii} - N(R {}^{i} ) - R }}[/tex]

R is the aryl group such as alkane

i think it becomes an amine

11. An isotope Q has 18 neutrons a mass number of 34. (a) (i) What is an isotope? An isotope is one of two or C (b) Write its electron arrangement. Mass number=34 Number of neutrons=18 Number of Protons = 34-15-16 (c) To which period and group does Q belong? Protors - Electons - Atomic number Period - Group (d) How does Q form its ion?

Answers

An isotope is an element with the same atomic number but different mass number due to differences in number of neutrons.

electron configuration is 2,8,6.

Belongs to group 6 and period group 3.

It forms an ion by accepting 2 electrons

A natural element consists of two isotopes: Cl-35 and Cl-37. The composition of these two isotopes differs by:

Answers

Answer:

There are no options in this question, however, it can be answered based on general understanding

- The number of neutrons each isotope contain

Explanation:

Isotopes are atoms of an element with the same atomic number or number of protons but different mass number/atomic masses. Since isotopes have same proton numbers, they have similar chemical behavior or identity.

However, difference in atomic mass or mass number of the same atomic number indicates that the number of neutrons each isotope contain differs from one another. Hence, in two isotopes of chlorine given as follows: Cl-35 and Cl-37, the NUMBER OF NEUTRONS in each atom differentiates the two isotopes.

Cl-35 contains 18 neutrons while Cl-37 contains 20 neutrons.

Determine the mmol of both starting materials (factoring in that formic acid is not pure, but rather 88% weight/volume, or 88g/100 ml), showing your work. Determine the limiting reagent in this synthesis. Lastly, calculate the theoretical yield of benzimidazole that you could expect to form.

Answers

Solution :

Molecular      Molar Mass       Volume      Density       Mass      Moles      nmoles

formula            (g/mol)               (mL)          (g/mL)           (g)

[tex]$C_6H_8N_2$[/tex]            108.14                                                    0.108      0.001          1

HCOOH           46.02                0.064          1.22     0.07808     0.0017       1.7

mmoles of o-phenylenediamine = 1 mmoles

mmoles of formic acid = 1.7 [tex]\approx[/tex] 2 mmoles

From the reaction of o-phenylenediamine and formic acid, we see,

1 mmole of o-phenylenediamine reacts with 1 mmole of formic acid.

But here, 2 mmoles of the formic acid , this means that the formic acid is an excess reagent and the o-phenylenediamine is the limiting reagent here.

The amount of product depends on the limiting reagent that is o-phenylenediamine. So, 1mmole of o-phenylenediamine will give 1mmole of product.

molar mass of Benzimidazole = [tex]118.14[/tex] g/mol

mmoles of Benzimidazole formed = [tex]1[/tex] mmol

Mass of benzimidazole formed = molar mass x [tex]\frac{nmoles}{1000}[/tex]

                                                    [tex]$=\frac{118.14 \times 1}{1000}$[/tex]

                                                     = 0.11814 g

So the theoretical yield of Benzimidazole is = 0.118 g = 118mg

Balance the following skeleton reaction and identify the oxidizing and reducing agents: Include the states of all reactants and products in your balanced equation. You do not need to include the states with the identities of the oxidizing and reducing agents.
NO_2(g) rightarrow NO_3^-(aq) +NO_2^- (aq) [basic]
The oxidizing agent is:______.
The reducing agent is:_______.

Answers

Answer:

a. 2NO₂ (g) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻  (aq) + H₂O (l)

b. i. NO₂⁻ is the oxidizing agent

ii. NO₃⁻ is the reducing agent.

Explanation:

a. Balance the following skeleton reaction

The reaction is

NO₂ (g) → NO₃⁻ (aq) + NO₂⁻ (aq)

The half reactions are

NO₂ (g) → NO₃⁻ (aq)  (1) and

NO₂ (g) → NO₂⁻  (aq) (2)

We balance the number of oxygen atoms in equation(1) by adding one H₂O molecule to the left side.

So, NO₂ (g) + H₂O (l) → NO₃⁻ (aq)

We now add two hydrogen ions 2H⁺ on the right hand side to balance the number of hydrogen atoms

NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + 2H⁺ (aq)

The charge on the left hand side is zero while the total charge on the right hand side is -1 + 2 = +1. To balance the charge on both sides, we add one electron to the right hand side.

So, NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + 2H⁺ (aq) + e⁻  (4)

Since the number of atoms in equation two are balanced, we balance the charge since the charge on the left hand side is zero and that on the right hand side is -1. So, we add one electron to the left hand side.

So, NO₂ (g) + e⁻ → NO₂⁻  (aq) (5)

We now add equation (4) and (5)

So, NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + 2H⁺ (aq) + e⁻  (4)

+  NO₂ (g) + e⁻ → NO₂⁻  (aq) (5)

2NO₂ (g) + H₂O (l) + e⁻ → NO₃⁻ (aq) + NO₂⁻  (aq) + 2H⁺ (aq) + e⁻  (4)

2NO₂ (g) + H₂O (l)  → NO₃⁻ (aq) + NO₂⁻  (aq) + 2H⁺ (aq)  

We now add two hydroxide ions to both sides of the equation.

So, 2NO₂ (g) + H₂O (l) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻  (aq) + 2H⁺ (aq) + 2OH⁻ (aq)

The hydrogen ion and the hydroxide ion become a water molecule

2NO₂ (g) + H₂O (l) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻  (aq) + 2H₂O (l)

2NO₂ (g) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻  (aq) + H₂O (l)

So, the required reaction is

2NO₂ (g) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻  (aq) + H₂O (l)

b. Identify the oxidizing agent and reducing agent

Since the oxidation number of oxygen in NO₂ is -2. Since the oxidation number of NO₂ is zero, we let x be the oxidation number of N.

So, x + 2 × (oxidation number of oxygen) = 0

x + 2(-2) = 0

x - 4 = 0

x = 4

Since the oxidation number of oxygen in NO₂⁻ is -1. Since the oxidation number of NO₂⁻ is -1, we let x be the oxidation number of N.

So, x + 2 × (oxidation number of oxygen) = 0

x + 2(-2) = -1

x - 4 = -1

x = 4 - 1

x = 3

Also, the oxidation number of oxygen in NO₃⁻ is -1. Since the oxidation number of NO₃⁻ is -1, we let x be the oxidation number of N.

So, x + 2 × (oxidation number of oxygen) = -1

x + 3(-2) = -1

x - 6 = -1

x = 6 - 1

x = 5

i. The oxidizing agent

The oxidation number of N changes from +4 in NO₂ to +3 in NO₂⁻. So, Nitrogen is reduced and thus  NO₂⁻ is the oxidizing agent

ii. The reducing agent

The oxidation number of N changes from +4 in NO₂ to +5 in NO₃⁻. So, Nitrogen is oxidized and thus and  NO₃⁻ is the reducing agent.

How many mL of 0.200M KI would contain 0.0500 moles of KI?

Please explain and show work.

Answers

Answer:

250ml

Explanation:

call it V

V*0.2=0.05 (moles)

so V=0.05/0.2 = 0.25l = 250ml

Molarity=0.2MNo of moles=0.05mol

We know

[tex]\boxed{\Large{\sf Molarity=\dfrac{No\:of\:moles\:of\:solute}{Volume\:of\:solution\:in\;\ell}}}[/tex]

[tex]\\ \Large\sf\longmapsto Volume\:of\:KI=\dfrac{0.05}{0.2}[/tex]

[tex]\\ \Large\sf\longmapsto Volume\:of\:KI=0.25L[/tex]

[tex]\\ \Large\sf\longmapsto Volume\:of\:KI=250mL[/tex]

FORMULAS OF IONIC COMPOUNDS
FIND: POSITIVE ION, NEGATIVE ION AND FORMULA IN:
NAME:
Sodium chloride
Magnesium chloride
Calcium oxide
Lithium phosphide
Aluminum sulfide
Calcium nitride
Iron(III)chloride
Iron(II)oxide
Copper(I)sulfide
Copper(II)nitride
Zinc oxide
Silver sulfide
Potassium carbonate
Sodium nitrate
Calcium bicarbonate
Aluminum hydroxide
Lithium phosphate
Potassium sulfate

Answers

Answer:

NaCl, Na⁺,Cl⁻.

MgCl₂, Mg²⁺, Cl⁻.

CaO, Ca²⁺, O²⁻.

Li₃P, Li⁺, P³⁻.

Al₂S₃, Al³⁺, S²⁻.

Ca₃N₂, Ca²⁺, N³⁻.

FeCl₃, Fe³⁺, Cl⁻.

FeO, Fe²⁺, O²⁻.

Cu₂S, Cu⁺, S²⁻.

Cu₃N₂, Cu²⁺, N³⁻.

ZnO, Zn²⁺, O²⁻.

Ag₂S, Ag⁺, S²⁻.

K₂CO₃, K⁺, CO₃²⁻.

NaNO₃, Na⁺, NO₃⁻.

Ca(HCO₃)₂, Ca²⁺, HCO₃⁻.

Al(OH)₃, Al³⁺,OH⁻.

Li₃PO₄, Li⁺, PO₄³⁻.

K₂SO₄, K⁺, SO₄²⁻.

Explanation:

Sodium chloride. NaCl, formed by the cation Na⁺ and the anion Cl⁻.

Magnesium chloride. MgCl₂, formed by the cation Mg²⁺ and the anion Cl⁻.

Calcium oxide. CaO, formed by the cation Ca²⁺ and the anion O²⁻.

Lithium phosphide. Li₃P, formed by the cation Li⁺ and the anion P³⁻.

Aluminum sulfide. Al₂S₃, formed by the cation Al³⁺ and the anion S²⁻.

Calcium nitride. Ca₃N₂, formed by the cation Ca²⁺ and the anion N³⁻.

Iron(III)chloride. FeCl₃, formed by the cation Fe³⁺ and the anion Cl⁻.

Iron(II)oxide. FeO, formed by the cation Fe²⁺ and the anion O²⁻.

Copper(I)sulfide. Cu₂S, formed by the cation Cu⁺ and the anion S²⁻.

Copper(II)nitride. Cu₃N₂, formed by the cation Cu²⁺ and the anion N³⁻.

Zinc oxide. ZnO, formed by the cation Zn²⁺ and the anion O²⁻.

Silver sulfide. Ag₂S, formed by the cation Ag⁺ and the anion S²⁻.

Potassium carbonate. K₂CO₃, formed by the cation K⁺ and the anion CO₃²⁻.

Sodium nitrate. NaNO₃, formed by the cation Na⁺ and the anion NO₃⁻.

Calcium bicarbonate. Ca(HCO₃)₂, formed by the cation Ca²⁺ and the anion HCO₃⁻.

Aluminum hydroxide. Al(OH)₃, formed by the cation Al³⁺ and the anion OH⁻.

Lithium phosphate. Li₃PO₄, formed by the cation Li⁺ and the anion PO₄³⁻.

Potassium sulfate. K₂SO₄, formed by the cation K⁺ and the anion SO₄²⁻.

Once you have collected 40 mL of distillate, you should ________. turn off your hot plate lower your lab jack carelessly use your hand to remove the heating block turn off the hot plate and carefully lower the lab jack, making sure that no cords or hoses get caught in it

Answers

Answer:

Once you have collected 40 mL of distillate, you should ________.

turn off the hot plate and carefully lower the lab jack, making sure that no cords or hoses get caught in it.

Explanation:

Distillate is the product obtained from the process of distillation.  Distillation is the separation of components of a liquid mixture based on different boiling points. Distillation can be used to purify alcohol, for desalination, refining of crude oil, and for obtaining liquefied gases.  A lab jack is an essential tool that supports and lifts hotplates, glassware, baths, and other small lab equipment requiring stable surfaces at a specific height.

When selling on the street, dealers may not know the purity of the ketamine they have, and thus users do not know exactly how much ketamine they are receiving. It is unlikely that the ketamine is pure, or even that different batches of ketamine have the same purity. Assume the drug the user typically buys is only 25% ketamine, and therefore, the user actually dissolved 0.250 g ketamine in 1/4 cup of water to make the solution instead of 1 g in the previous question. 1 cup = 236.5 mL What volume of this ketamine solution would the 65.0 kg user have to inject to experience a high at 0.400 mg/kg? volume: mL What volume of this ketamine solution would the user have to inject to become unconscious at 2.00 mg/kg? of use contact us help What volume of this ketamine solution would the user have to inject to become unconscious at 2.00 mg/kg?

Answers

Answer:

a. 6.15 mL b. 30.73 mL

Explanation:

a. What volume of this ketamine solution would the 65.0 kg user have to inject to experience a high at 0.400 mg/kg?

Since we have 0.250 g of ketamine in 1/4 cup of water and 1 cup of water equals 236.5 mL, we need to find the concentration of ketamine we have.

So concentration of ketamine C = mass of ketamine, m/volume of water, V

m = 0.250 g and V = 1/4 cup = 1/4 × 236.5 mL = 59.125 mL

So, C = m/V = 0.250 g/59.125 mL = 0.00423 g/mL = 4.23 mg/mL

Since the user has a mass of 65 kg and requires a high at 0.400 mg/kg, the mass of ketamine for this high is M = 65 kg × 0.400 mg/kg = 26 mg

Since mass, M = concentration ,C × volume, V

M = CV

V = M/C

The volume of ketamine required for the 0.400 mg/kg high is

V = 26 mg/4.23 mg/mL

V = 6.15 mL

b. What volume of this ketamine solution would the user have to inject to become unconscious at 2.00 mg/kg?

Since the concentration of ketamine is C = 4.23 mg/mL, and Since the user has a mass of 65 kg and requires an injection of 2.00 mg/kg to be unconscious, the mass of ketamine required to be unconscious is M' = 65 kg × 2.00 mg/kg = 130 mg

Since mass, M' = concentration ,C × volume, V

M' = CV

V = M/C

The volume of ketamine required for the 2.00 mg/kg unconscious injection is

V = 130 mg/4.23 mg/mL

V = 30.73 mL

A solution has a OH- concentration of 7.7x10-3. What is the pH of this solution?

Answers

Answer:

11.9 pH

Explanation:

First, we need to find pOH

To find that, we use the formula -log[OH]

-log[7.7x10^-3] = 2.11351

To find the pH, we'll use this formula: 14 = pH + pOH

14 = pH + 2.11351

Subtract boths sides by 2.11351

14 = pH + 2.11351

-2.11351  -2.11351

pH = 11.88649

There are _______ alkanes with molecular formula C10H22

a. 74

b. 75

c. 76

d. 77​

Answers

I guess b cause there are 75 alkanes with molecular formula C10H22

Convert 1.25 x 1024 atoms of carbon to moles of carbon.

Answers

Answer:

2.076

Explanation:

1 mole is 6.02 * 10^23

To convert from atoms (or molecules or compounds or ions etc.) to mols, you divide the number of atoms (or molecules or etc.) by 6.02 * 10^23

So it is (1.25 * 10^24)/(6.02 * 10^23)

=2.076

Answer:

[tex]\boxed {\boxed {\sf 2.08 \ mol \ C}}[/tex]

Explanation:

We are asked to convert a number of carbon atoms to moles.

We will use Avogadro's Number for this, which is 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. For this problem, the particles are atoms of carbon. There are 6.022 ×10²³ atoms of carbon in 1 mole of carbon.

We will also use dimensional analysis to solve this problem. To do this, we use ratios. Set up a ratio using the underlined information.

[tex]\frac {6.022 \times 10^{23} \ atoms \ C}{1 \ mol \ C}[/tex]

We are converting 1.25 ×10²⁴ atoms of carbon to moles, so we multiply the ratio by that value.

[tex]1.25 \times 10^{24} \ atoms \ C* \frac {6.022 \times 10^{23} \ atoms \ C}{1 \ mol \ C}[/tex]

Flip the ratio. It remains equivalent, but it allows us to cancel the units atoms of carbon.

[tex]1.25 \times 10^{24} \ atoms \ C* \frac{1 \ mol \ C} {6.022 \times 10^{23} \ atoms \ C}[/tex]

[tex]1.25 \times 10^{24} * \frac{1 \ mol \ C} {6.022 \times 10^{23} }[/tex]

[tex]\frac{1.25 \times 10^{24} } {6.022 \times 10^{23} } \ mol \ C[/tex]

[tex]2.075722351 \ mol \ C[/tex]

The original measurement of atoms has three significant figures, so our answer must have the same. For the number we calculated, that is the hundredths place. The 5 in the thousandths place tells us to round the 7 up to an 8.

[tex]2.08 \ mol \ C[/tex]

1.25 ×10²⁴ atoms of carbon is equal to approximately 2.08 moles of carbon.

Which species is the conjugate base of H2SO3

Answers

Explanation:

As you know, the conjugate base of an acid is determined by looking at the compound that's left behind after the acid donates one of its acidic hydrogen atoms.

The compound to which the acid donates a proton acts as a base. The conjugate base of the acid will be the compound that reforms the acid by accepting a proton.

In this case, sulfurous acid has two protons to donate. However, the conjugate base of sulfurous acid will be the compound left behind after the first hydrogen ion is donated.

In the reaction HCI + NH4OH --> NH4CI+H2O, which compound has an element ratio of 1:4:1?

H2O

NH4Cl

HCI

ΝΗ4ΟΗ

Answers

NH4Cl has element ratio of 1:4:1

The compound in this reaction which is having the elemental ratio of 1:4:1 is NH₄Cl where nitrogen and chlorine are of one mole each with 4 hydrogens.

What is elemental ratio?

Elemental ratio of a compound is the ratio of number of atoms  of each  elements in that compound. The elemental ratio can be determined from the molecular formula of compounds.

The given reaction is a double displacement reaction. Here, the Cl group is replaced to the ammonia and OH group is replaced to the water. Thus, two species is replaced in the reaction.

In NH₄Cl, there are one nitrogen, 4 hydrogens and one chlorine atom. Therefore, the elemental ratio of the compound is 1:4:1. The elemental ratio of water is 2:1 and HCl is 1:1 and that in NH₄OH is 1:5:1. Hence, option b is correct.

To find more on elemental ratio, refer here:

https://brainly.com/question/17613193

#SPJ2

Which of the following have only a -C-O-C- functional group?

Answers

Answer:

B) ethers

Explanation:

The functional group of an organic compound defines its specificity. The functional group is responsible for the chemical behavior of an organic compound. For example, alkenes are known to have a carbon-carbon double bond (C=C) functional group.

Likewise, organic compounds known as ETHERS are known to possess an ethoxy functional group i.e. oxygen atom bonded to two alkyl groups (R- OR; where R is an alkyl group). Members of ether functional group includes dimethyl ether (CH3-O-CH3), diethyl ether (C2H5-O-C2H5).

What is alkaline and what is acidic pH

Answers

Answer:

An alkaline is a substance that dissolves in water to produce hydroxyl ions (OH-)

Explanation:

The pH range of an alkaline is from 8–14.

Acidic pH ranges from 0–6.9.

what type of bonding does Sodium Sulphate comes under?and explain in detail please​

Answers

Answer:

The bond between sodium sulfate is an ionic bond since it's a bond between a metal and non metals however the bond between sulfur and oxygen is a covalent bond since the two are non metals and the other reason that makes this an ionic bond is that there is both losing and gaining of electrons..

I hope this helps

An analytical chemist is titrating of a solution of hydrazoic acid with a solution of . The of hydrazoic acid is . Calculate the pH of the acid solution after the chemist has added of the solution to it.

Answers

Answer:

pH = 12.43

Explanation:

...is titrating 212.7 mL of a 0.6800 M solution of hydrazoic acid (HN3) with a 0.2900 M solution of KOH. The p Ka of hydrazoic acid is 4.72. Calculate the pH of the acid solution after the chemist has added 571.6 mL of the KOH solution to it.

To solve this question we need to know that hidrazoic acid reacts with KOH as follows:

HN3 + KOH → KN3 + H2O

Moles KOH:

0.5716L * (0.2900mol /L) =0.1658 moles of KOH

Moles HN3:

0.2127L * (0.6800mol/L) = 0.1446 moles HN3

As the reaction is 1:1, the KOH is in excess. The moles in excess of KOH are:

0.1658 moles - 0.1446 moles =

0.0212 mol KOH

In 212.7mL + 571.6mL = 784.3mL = 0.7843L

The molarity of KOH = [OH-] is:

0.0212 mol KOH / 0.7843L = 0.027M = [OH-]

The pOH is defined as -log [OH-]

pOH = -log 0.027M

pOH = 1.57

pH = 14 - pOH

pH = 12.43

Preparation the buffer solution: initial pH of buffer solution: ____ Titration of a weak acid with a strong base: initial pH of weak acid: ____ final pH of weak acid: ____ Amount of NaOH added: ____ Titration Curve for Weak Acid with a Strong Base (Paste curve here.)

Answers

Answer:

pH of buffer solution is 7.0

Initial pH of Weak acid is 3.27

Final pH of weak acid is 3.07

Amount of NaOH added is 1ml

Explanation:

Titration is a process in which acid and base are introduced together until a neutral solution is achieved whose pH value is near to buffer solution which is 7.0, the pH value for acid is below 7 while pH value for base is above 7.

The enthalpy of vaporization of water is 2,257,000 J/kg. If I have a 1 kg sample, how much energy is needed to boil all of it

Answers

Answer:

2257000 J

Explanation:

Applying,

Q = Cₓm.................. Equation 1

Where Q = amount of energy need to boil the water, Cₓ = Enthalpy of vaporization of water, m = mass of water.

From the question,

Given: Cₓ = 2257000 J/kg, m = 1 kg

Substitute these values into equation 1

Q = 2257000×1

Q = 2257000 J

Hence the energy needed to boil all of the water is 2257000 J

Other Questions
generate a frequency table for the following data: 3, 12, 25, 2, 3, 6, 17, 17, 15, 13, 20, 12, 21, 18, 19what value should be placed in the second column for the range 6-10?a. 2b. 3c. 5d. 1 Does the coefficient of kinetic friction depend on the speed? A projectile is fired with a velocity of 320 ms at an angle of 30 degree to a horizontal.1 Find the time to reach the maximum height. 2 it's horizontal range. please explain your answer Joel can do 20 math problems in 90 seconds How many seconds would it take him to do 32 problems?HELP ME ITS SUPER HARD Write 0.06 as a fraction how a teens lifestyle may contribute to the development and progression of hiv? Jeff Gordon leads his race and must drive into a curve at top speed to win it all. The radius of the curve is 1000 m and the coefficient of static friction between his tires and the dry pavement is 0.50. Questions and points to answer for each piece of art:- What does this piece tell you about the culture?- Think about daily life, food, celebrations and rituals, nature, and overall lifestyle.- How is this piece of art different from the rest of the paintings?The First one 'At the Moulin Rouge, The Dance' by Henri de Toulouse-Lautrec France, 1890The Second one 'Self Portrait with Thorn Necklace and Hummingbird' by Frida Kahlo Mexico, 1940The Third one 'The Slav Epic' by Alphonse Mucha The Czech Republic, 19101928The Last one India, 1st century A.D. Complete the recursive formula of the arithmetic sequence -15, -11, -7, -3,...15,11,7,3,...minus, 15, comma, minus, 11, comma, minus, 7, comma, minus, 3, comma, point, point, point. c(1)=c(1)=c, left parenthesis, 1, right parenthesis, equals c(n)=c(n-1)+c(n)=c(n1)+c, left parenthesis, n, right parenthesis, equals, c, left parenthesis, n, minus, 1, right parenthesis, plus How long was Louisiana a territory? What is the smallest two-digit integer $n$ such that switching its digits and then adding 3 results in $2n$ Which represents the inverse of the function f(x) = 4x?Oh(x) =x+4O h(x) =x-4O h(x) = 3/4xO h(x) = =1/2x Anybody please help me please?Treaty 3What actually happened/how were/are Indigenous Peoples impacted? 1. Bob makes $14 perhour, plus $50 a day forworking. Write anexpression to representhow much money Bobmakes in a day. Question 44-1) Consider any organization you are aware of from work, study, or themedia. How do they manage people? Do people in those organizationsfeel important? 2) Nitrogen gas will react with hydrogen gas to produce ammonia, NH3, How manymoles of hydrogen gas are required to produce 0,86 moles of NH3? Evaluate the expression 5xy+ -2xy+y^2 when x=4 and y=-5 PLZ SOLVE THE PROBLEM week 16 french classwork