Your physics TA has a far point of 0.759 m from her eyes and is able to see distant objects in focus when wearing glasses with a refractive power of −1.35 D. Determine the distance between her glasses and eyes.

Answers

Answer 1

Answer:

[tex]d=0.019m[/tex]

Explanation:

From the question we are told that:

Far point [tex]x=0.759m[/tex]

Refractive power [tex]P=-1.35 D.[/tex]

Generally, the equation for Focal length is mathematically given by

[tex]F=\frac{1}{P}[/tex]

[tex]F=\frac{1}{-1.35}[/tex]

[tex]F=-0.74m[/tex]

Therefore

[tex]\frac{1}{f}=\frac{1}{u}+\frac{1}{v}[/tex]

Where

[tex]u=o[/tex]

[tex]\frac{1}{-0.74}=\frac{1}{0}+\frac{1}{v}[/tex]

[tex]v=-0.74m[/tex]

Therefore,The between her glasses and eyes

[tex]d=x-v[/tex]

[tex]d=0.759-0.74m[/tex]

[tex]d=0.019m[/tex]


Related Questions

In order to test an intentionally weak adhesive, the bottom of the small 0.15-lb block is coated with adhesive and then the block is pressed onto the turntable with a known force. The turntable starts from rest at t = 0 and uniformly accelerates with a = 2 rad/s^2. If the adhesive fails at exactly t = 3 s, then determine:

a. the magnitude of the ultimate shear force that the adhesive supports
b. the angular displacement of the turntable at the time of failure

Answers

Answer:

answer

Explanation:

it is the answer which was presented in the year

Calculate the electric field at point A, located at coordinates (0 m, 12.0 m ). Give the x and y components of the electric field as an ordered pair. Express your answer in newtons per coulomb to three significant figures.

Answers

Answer:

The correct answer is "[tex](0,300\times 10^{-3} \ N/C)[/tex]".

Explanation:

The given problem seems to be incomplete. Please find the attachment of the complete query.

According to the question,

At point A, we have

⇒ [tex]E_x = \frac{k q_1}{d_1^2} Cos \theta_1 - \frac{k q_2}{d_2^2} Cos \theta_2[/tex]

or,

⇒ [tex]E_x = 9\times 10^9\times [\frac{6\times 10^{-9}}{15^2}\times \frac{9}{15}-\frac{8\times 10^{-9}}{20^2}\times \frac{16}{20} ][/tex]

         [tex]=0[/tex]

and,

⇒ [tex]E_y = \frac{kq_1}{d_1^2}Sin \theta_1 +\frac{kq_2}{d_2^2}Sin \theta_2[/tex]

or,

⇒ [tex]E_y = 9\times 10^9\times [\frac{6\times 10^{-9}\times 12}{15^2\times 15}+ \frac{8\times 10^{-9}\times 12}{20^2\times 20} ][/tex]

         [tex]=0.3 \ N/C[/tex]

What computer measures physical quantities?​

Answers

Answer:

Three Types of Computer The Computer are classified into three main types:: • Analog Computers • Digital Computers • Hybrid Computers (Analog + Digital) Analog Computers:: Analog Computer measures “Physical Quantities” for example Temperature, Voltage, Pressure, and Electric Current.

A ring with an 18mm diameter falls off a scientist's finger into the solenoid in the lab. The solenoid is 25 cm long, 5.0 cm in diameter and has 1500 turns. When turned on, the current in the solenoid is increases linearly to 20 A in 1 second. What is the induced emf in the ring?
a) 2.0 x 10-5 v
b) 3.8 x 10-5 v
c) 1.2 x 10-3 v
d) 1.9 x 10-4 v

Answers

Answer:

the answer should be b) 3.8 x 10-5 v

Two loudspeakers, 5.5 m apart and facing each other, play identical sounds of the same frequency. You stand halfway between them, where there is a maximum of sound intensity. Moving from this point toward one of the speakers, you encounter a minimum of sound intensity when you have moved 0.25 m . Assume the speed of sound is 340 m/s.

Required:
a. What is the frequency of the sound?
b. If the frequency is then increased while you remain 0.21 m from the center, what is the first frequency for which that location will be a maximum of sound intensity?
c.

Answers

Solution :

Let [tex]$d_1=\frac{5.5}{2}[/tex]

          = 2.75 m

[tex]d_2 = 0.21 \ m[/tex]

And [tex]$d=|d_1-d_2|$[/tex]

       [tex]$d=(d_1+d_2) - (d_1-d_2)$[/tex]

       [tex]$d=(2.75+0.21) - (2.75-0.21)$[/tex]

       [tex]$d = 2.96-2.54$[/tex]

       [tex]d = 0.42 \ m[/tex]

a). At minimum,

[tex]$d=\frac{\lambda}{2}$[/tex]

[tex]$\lambda = 2d$[/tex]

  = 2 x 0.42

  = 0.84 m

Frequency, [tex]$\nu = \frac{v}{\lambda}$[/tex]

                      [tex]$=\frac{340}{0.84}$[/tex]

                      = 404.76 Hz

Therefore, the frequency of he sound, [tex]$\nu$[/tex] = 404.76 Hz

b). At maximum, λ = d = 0.42 m

Therefore, the frequency, [tex]$\nu = \frac{v}{\lambda}[/tex]

                                             [tex]$=\frac{350}{0.42}$[/tex]

                                             = 809.52 Hz

A mountain biker takes a jump in a race and goes airborne. The mountain bike is travelling at 10.0 m/s before it goes airborne. If the mass of the front wheel on the bike is 750 g and has radius 35 cm, what is the angular momentum of the spinning wheel in the air the moment the bike leaves the ground?

Answers

Answer:

Explanation:

The formula for angular momentum is

L = mvr where L is the angular momentum, m is the mass of the object, v is the velocity of the object, and r is the radius of the object. The problem we have that prevents us from just throwing those numbers in there is that mass has to be in kg and it's not, and radius has to be in meters and it's not.

Changing the mass to kg:

750 g = .750 kg

Changing the radius to m:

35 cm = .35 m

Now we can fill in the variables with their respective values:

L = .750(10.0)(.35) gives us

[tex]L=2.625\frac{kg*m^2}{s}[/tex]

Choose the appropriate explanation how such a low value is possible given Saturn's large mass - 100 times that of Earth.

a. This low value is possible because the magnetic field of Saturn is so strong.
b. This low value is possible because the magnetic field of Saturn is so weak.
c. This low value is possible because the density of Saturn is so high.
d. This low value is possible because the density of Saturn is so low.

Answers

Answer:

Explanation:

That is an amazing fact.

The minus sign is what you have to pay attention to. The earth has a mass of 100 times that of Saturn. As someone on here once noted, Saturn has such a low density that it would float in water.

The answer is D

Suppose a teenager on her bicycle. The rear wheel is spinning at an angular velocity of 281.133 rpm. She stops it in 3.686 s. How many revolution did it take to stop it?

Answers

Answer:

Explanation:

The formula for angular velocity is

[tex]\omega=\frac{\theta}{t}[/tex] where omega is the angular velocity, theta is the change in the angular rotation, and t is the time in seconds. First and foremost, we have the angular rotation in minutes and the time in seconds, so that's a problem we have to amend. Let's change the angular rotation to rotations per second:

[tex]281.133\frac{r}{min}*\frac{1min}{60s}=4.68555\frac{r}{s}[/tex]

Now we're ready to set up the problem:

[tex]4.68555=\frac{\theta}{3.686}[/tex] and we multiply both sides by 3.686 to get the rotations per seconds:

θ = 17.27 rotations

A student of mass 50kg takes 15seconds to run up a flight of 50 steps. If each step is 20cm, calculate the potential energy of the student at the maximum height

Answers

Answer:

the answer is 49000 joules at the maximum height

Explanation:

we know the mass (50kg)

we know the acceleration due to gravity(9.8m/s²)

we know the height too(maximum height meaning the 50th step so we multiply 50 with 20cm as each step is 20 cm and we get 1000 cm, convert to m it is 100 m

the formula is potential energy=mgh

m for mass

g for acceleration due to gravity

h for height

multiply them

50x9.8x100

we get 49000

the unit of potential energy is joules so the answer is

49000 joules

Answer:

49000 joules

Explanation:

hope it helpss


Physics question plz help ASAP

Answers

The Correct answer is D Hope this helps :)

Which term defines seeking some way of achieving a goal by overcoming obstacles or finding an answer to a question?

Answers

Answer:

Problem solving

hope this helps :)

A 5.85-mm-high firefly sits on the axis of, and 13.7 cm in front of, the thin lens A, whose focal length is 5.01 cm. Behind lens A there is another thin lens, lens B, with focal length 25.9 cm. The two lenses share a common axis and are 62.5 cm apart. 1. Is the image of the firefly that lens B forms real or virtual?
a. Real
b. Vrtual
2. How far from lens B is this image located (expressed as a positive number)?
3. What is the height of this image (as a positive number)?
4. Is this image upright or inverted with respect to the firefly?
a. Upright
b. Inverted

Answers

Answer:

1. The image is real

2. 5.85

3. h' = 3.05 mm

4. The image is upright

Explanation:

1. Start with the first lens and apply 1/f = 1/p + 1/q

1/5.01 = 1/13.7 + 1/q

q = 7.90 cm

Since that distance is behind the first lens, and the second lens is 62.5 cm behind the first lens, that distance is 62.5 - 7.90 = 54.6 cm in front of the second lens, and becomes the object for that lens, thus,

1/25.9 = 1/54.6 + 1/q

q = 49.3 cm behind the second lens

Using that information, since q is positive, the image is real

2. Also, using that information, you have the second answer, which is 49.3 cm

The height can be found from the two magnifications.

m = -q/p

m1 = -7.9/13.7 = -.577

m2 = -49.3/54.6 = -.903

Net m = (-.577)(-.903) = .521

Then, m = h'/h

.521 = h'/5.85

3. h' = 3.05 mm

4. For the fourth answer, since the overall magnification is positive, the final image is upright

Paramagnetism is closely associated with: A. the tendency of electron dipole moments to align with an applied magnetic field B. the force exerted by electron dipole moments on each other C. the exchange force between electrons D. the tendency of electron dipole moments to align opposite to an applied magnetic field

Answers

Answer:

the tendency of electron dipole moments to align with an applied magnetic field

Explanation:

Paramagnetism has to do with possession of unpaired electrons. Substances that possess unpaired electrons are said to be paramagnetic.

When an external magnetic field is applied to a paramagnetic substance, the magnetic field causes the electrons spins of the paramagnetic substance to align parallel to the field,which leads to a net attraction.

Hence, paramagnetism is closely associated with the tendency of electron dipole moments to align with an applied magnetic field.

A kind of variable that a researcher purposely changes in investigation is

Answers

Answer:

independent variable

Explanation:

Two resistances, R1 and R2, are connected in series across a 12-V battery. The current increases by 0.500 A when R2 is removed, leaving R1 connected across the battery. However, the current increases by just 0.250 A when R1 is removed, leaving R2 connected across the battery.
(a) Find R1.
Ω
(b) Find R2.
Ω

Answers

Answer:

a)   R₁ = 14.1 Ω,   b)  R₂ =  19.9 Ω

Explanation:

For this exercise we must use ohm's law remembering that in a series circuit the equivalent resistance is the sum of the resistances

all resistors connected

           V = i (R₁ + R₂)

with R₁ connected

           V = (i + 0.5) R₁

with R₂ connected

           V = (i + 0.25) R₂

We have a system of three equations with three unknowns for which we can solve it

We substitute the last two equations in the first

           V = i ( [tex]\frac{V}{ i+0.5} + \frac{V}{i+0.25}[/tex] )

           1 = i ( [tex]\frac{1}{i+0.5} + \frac{1}{i+0.25}[/tex] )

           1 = i ( [tex]\frac{i+0.5+i+0.25}{(i+0.5) \ ( i+0.25) }[/tex] ) =  [tex]\frac{i^2 + 0.75i}{i^2 + 0.75 i + 0.125}[/tex]

           i² + 0.75 i + 0.125 = 2i² + 0.75 i

           i² - 0.125 = 0

           i = √0.125

           i = 0.35355 A

with the second equation we look for R1

          R₁ = [tex]\frac{V}{i+0.5}[/tex]

          R₁ = 12 /( 0.35355 +0.5)

          R₁ = 14.1 Ω

with the third equation we look for R2

          R₂ = [tex]\frac{V}{i+0.25}[/tex]

          R₂ =[tex]\frac{12}{0.35355+0.25}[/tex]

          R₂ =  19.9 Ω

What improvements were made in measuring system with the introduction of standard units?​

Answers

Answer:

Standard units are commonly used units of measurement, which help us measure length, height, weight, temperature, mass and more. These units are standardised, which means that everyone gets the same understanding of the size, weight and other properties of objects and things.

Explanation:

A rocket explodes into two fragments, one 25 times heavier than the other. The magnitude of the momentum change of the lighter fragment is A) 25 times as great as the momentum change of the heavier fragment. B) The same as the momentum change of the heavier fragment. C) 1/25 as great as the momentum change of the heavier fragment. D) 5 times as great as the momentum change of the heavier fragment. E) 1/4 as great as the momentum change of the heavier fragment.

Answers

Answer:

B) The same as the momentum change of the heavier fragment.

Explanation:

Since the initial momentum of the system is zero, we have

0 = p + p' where p = momentum of lighter fragment = mv where m = mass of lighter fragment, v = velocity of lighter fragment, and p' = momentum of heavier fragment = m'v' where m = mass of heavier fragment = 25m and v = velocity of heavier fragment.

0 = p + p'

p = -p'

Since the initial momentum of each fragment is zero, the momentum change of lighter fragment Δp = final momentum - initial momentum = p - 0  = p

The momentum change of heavier fragment Δp' = final momentum - initial momentum = p' - 0 = p' - 0 = p'

Since p = -p' and Δp = p and Δp' = -p = p ⇒ Δp = Δp'

So, the magnitude of the momentum change of the lighter fragment is the same as that of the heavier fragment.  

So, option B is the answer

Thorium-232 goes through multiple types of decay in order to reach a stable isotope. What isotope is created after the first two decays if it first goes through an alpha decay and then a beta decay?

A)uranium-236
B)protactinium-232
C)radon-224
D)Astinium-228

Answers

Answer:

The answer would be D), if the decay is beta negative.

Explanation:

Thorium-232 goes through alpha decay:

Thorium-232 --> Helium-4 + Radium-228

Radium-228 then can undergo beta positive or beta negative decay:

Beta positive = Radium-228 --> Electron + Francium-228

Beta negative = Radium-228 --> Positron + Actinium-228

Therefore, the isotope that is created is Actinium-228

A smooth circular hoop with a radius of 0.400 m is placed flat on the floor. A 0.325-kg particle slides around the inside edge of the hoop. The particle is given an initial speed of 8.50 m/s. After one revolution, its speed has dropped to 5.50 m/s because of friction with the floor.
(a) Find the energy transformed from mechanical to internal in the particle "hoop" floor system as a result of friction in one revolution.
(b) What is the total number of revolutions the particle makes before stopping? Assume the friction force remains constant during the entire motion.

Answers

Answer:

a)  W = - 6.825 J,  b) θ = 1.72 revolution

Explanation:

a) In this exercise the work of the friction force is negative and is equal to the variation of the kinetic energy of the particle

         W = ΔK

         W = K_f - K₀

          W = ½ m v_f² - ½ m v₀²

         W = ½ 0.325 (5.5² - 8.5²)

         W = - 6.825 J

b) find us the coefficient of friction

Let's use Newton's second law

            fr = μ N

y-axis (vertical)   N-W = 0

            fr = μ W

work is defined by

             W = F d

the distance traveled in a revolution is

             d₀ = 2π r

             W = μ mg d₀ = -6.825

            μ = [tex]\frac{ -6.825}{d_o \ mg}[/tex]

               

The total work as the object stops the final velocity is zero v_f = 0

         W = 0 - ½ m v₀²

          W = - ½ 0.325 8.5²

          W = - 11.74 J

           μ mg d = -11.74

           

we subtitle the friction coefficient value

           ( [tex]\frac{-6.8525 }{d_o mg}[/tex]) m g d = -11.74

               6.825  [tex]\frac{d}{d_o}[/tex] = 11.74

               d = 11.74/6.825  d₀

               d = 1.7201  2π 0.400

               d = 4.32 m

this is the total distance traveled, the distance and the angle are related

              θ = d / r

              θ = 4.32 / 0.40

              θ = 10.808 rad

we reduce to revolutions

              θ = 10.808 rad (1rev / 2π rad)

              θ = 1.72 revolution

What is the name of the compound br8P4

Answers

Answer:

Octabromine tetraphosphide

Explanation:

This compound has in its formula:

- Eight bromines

- Four phosphorous

8 → octa prefix

4 → tetra prefix

Right answer is Octabromine tetraphosphide

if a projectile travels in the air for 6 seconds when does the projectile reach its highest point

Answers

This question deals with projectile motion, which is a motion on both the x-axis and y-axis, simultaneously. The total time of flight of the projectile trajectory is given, while the time to reach the highest point of the projectile is required to be found.

The projectile will reach the highest point in "3 seconds".

The total time of flight of a projectile is the time during which the projectile remains in the air. For a projectile motion that ends up on the same horizontal level, from where it started, the time to reach the highest point, is equal to half of the total time of flight.

In other words, the projectile motion takes the same time, to go from the starting level to the highest point (i.e upward motion), as the time taken to reach the starting level from the highest point (i.e downward motion).

[tex]t = \frac{1}{2}T[/tex]

where,

t = time to reach the highest point = ?

T = total time of flight = 6 seconds

Therefore,

[tex]t - \frac{1}{2}(6\ seconds)[/tex]

t = 3 seconds

Learn more about the projectile motion here:

https://brainly.com/question/20689870?referrer=searchResults

Convert 385k to temperature of

Answers

Answer:

233.33°F

Explanation:

(385K - 273.15) * 9/5 + 32 = 233.33°F

As the speed of a particle approaches the speed of light, the momentum of the particle Group of answer choices approaches zero. decreases. approaches infinity. remains the same. increases.

Answers

Answer:

approaches infinity

Explanation:

There are two momentums, the classical momentum which is equal to the product of mass and velocity, and the relativistic momentum, the one we should look at when we work with high speeds, and this happens because massive objects have a speed limit, in this case, we are approaching the speed of light, so we need to work with the relativistic momentum instead of the classical momentum.

The relativistic momentum can be written as:

[tex]p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]

where

u = speed of the object relative to the observer, in this case we have that u tends to c, the speed of light.

m = mass of the object

c = speed of light.

So, as u tends to c, we will have:

[tex]\lim_{u \to c} p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]

Notice that when u tends to c, the denominator on the first term tends to zero, thus, the relativistic momentum of the object will tend to infinity.

Then the correct option is infinity, as the particle speed approaches the speed of light, the relativistic momentum of the particle tends to infinity.

If a wave has to travel 600m and it’s wavelength is 0.4 m , with a frequency of 500Hz. How much time will it take for the wave to travel 600m ?

Answers

Velocity of wave = wavelength x frequency
v = (0.4 m)(500 Hz)
v = 200 m/s

v = d/t
t = d/v
t = (600m)/(200m/s)
t = 3s


what is science ? what qualities do we deal in deal in physic ? ​

Answers

science is all about the world around us

As a roller coaster car crosses the top of a 40-m-diameter loop-the-loop, its apparent weight (the normal force) is the same magnitude as the car's weight. What is the car's speed at the top?

Answers

Answer:

40 because if it is the same weight then there is no weight to make the ride slower so it 40

Explanation:

Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound

Answers

The question is incomplete. The complete question is :

Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound in the room is 340 m/s.

What is the frequency of the sound?

Solution :

Given :

The distance between the two loud speakers, [tex]d = 1.8 \ m[/tex]

The speaker are in phase and so the path difference is zero constructive interference occurs.

At the point [tex]D[/tex], the speakers are out of phase and so the path difference is [tex]$=\frac{\lambda}{2}$[/tex]

Therefore,

[tex]$AD-BD = \frac{\lambda}{2}[/tex]

[tex]$\sqrt{(1.8)^2+(3)^2-3} =\frac{\lambda}{2}$[/tex]

[tex]$\lambda = 2 \times 0.4985$[/tex]

[tex]$\lambda = 0.99714 \ m$[/tex]

Thus the frequency is :

[tex]$f=\frac{v}{\lambda}$[/tex]

[tex]$f=\frac{340}{0.99714}$[/tex]

[tex]f=340.9744[/tex] Hz

Suppose a 60-turn coil lies in the plane of the page in a uniform magnetic field that is directed out of the page. The coil originally has an area of 0.325 m2. It is stretched to have no area in 0.100 s. What is the magnitude (in V) and direction (as seen from above) of the average induced emf if the uniform magnetic field has a strength of 1.60 T

Answers

Answer:

 emf = 312 V

Explanation:

In this exercise the electromotive force is asked, for which we must use Faraday's law

           emf =  [tex]- N \frac{d \Phi }{dt}[/tex]- N dfi / dt

           Ф = B. A = B A cos θ

bold type indicates vectors.

They indicate that the magnetic field is constant, the angle between the normal to the area and the magnetic field is parallel by local cosine values ​​1

It also indicates that the area is reduced from  a₀ = 0.325 me² to a_f = 0 in a time interval of ΔT = 0.100 s, suppose that this reduction is linear

            emf = -N B [tex]\frac{dA}{dT}[/tex]

            emf = - N B (A_f - A₀) / Dt

we calculate

           emf = - 60 1.60 (0 - 0.325) /0.100

           emf = 312 V

The direction of this voltage is exiting the page

basic source of magnetism is a) charged particles alone b)Movement of charged particles c) Magnetic dipoles d)magnetic domains ​

Answers

Answer:

C . Magnetic dipoles is the correct

Answer:

b). movement of charged particles.

Explanation:

These charges create the nagnetic dipoles.

the lamp cord is 85cm long and comprises cupper wire. Calculate the wire‘s resistance?
radius of a wire is 1.8mmm,Use value of resistivity for Cu as 1.75 × 10-8Ωm.

Answers

Answer:

R = 0.0015Ω

Explanation:

The formula for calculating the resistivity of a material is expressed as;

ρ = RA/l

R is the resistance

ρ is the resistivity

A is the area of the wire

l is the length of the wire

Given

l = 85cm = 0.85m

A = πr²

A = 3.14*0.0018²

A = 0.0000101736m²

ρ = 1.75 × 10-8Ωm.

Substitute into the formula

1.75 × 10-8 = 0.0000101736R/0.85

1.4875× 10-8 = 0.0000101736R

R = 1.4875× 10-8/0.0000101736

R = 0.0015Ω

Other Questions
Calculate the pressure of dry O2 if the total pressure of O2 generated over water is measured to be 698 Torr and the temperature is 30.1 oC. P(H2O) = 19.8 torr.If the volume of the O2 sample in the question above was 56.3 ml, what volume would the dry O2 occupy at 755 torr (assume the temp was unchanged). help me please urgent need ng vua u tin ca nc php l ai ? What is the height of spanning tree obtained from Wn by the breadth-first search, starting at the central vertex of Wn? Help please .zzzz Value ofc -x^2+3x+c=0 How did Napoleon rise? What is the surface area of a dome (a half sphere) with a radius of 12 meters?576 pie meters squared48 pie meters squared288 pie meters squared96 pie meters squared 8. Share 5 sweets between 2 friends.8 1 How many sweets did each one get?8.2 Were there any sweets left over? solve the triangle. Round decimal places to the nearest place Let f(x)= [x/3] (where f(x) is the ceiling function). We learned that the floor and the ceiling functions are NOT invertible, but we also learned about the set of preimages of any value in the Range, the set of images. Keeping that in mind, give your answer in interval notation if necessary.a. Find f-1({5})b. Find f-1({-2})c. Find f-1({x | 5 = x = 9 })d. Find f-1({x | -6 = x = -2}) Phng trnh chuyn ng thng u ca mt cht im c dng: x = 2t 10. (x: km, t: h). Qung ng i c ca cht im sau 2h l bao nhiu? The "Pressure" meter allows you to read the pressure at different depths in the fluid. Place the pressure meter close to the bottom of the pool, and read the pressure. Slowly move the pressure meter toward the surface of the water in the pool and read the pressure at different depths in the pool. What happens to pressure in the fluid as the depth of the fluid decreases? While approaching a group of colleagues, Patrice overheard what she believed were inappropriate comments about another team member's physical attributes. Patrice mentioned the comments to her manager and indicated she was uncomfortable with colleagues speaking in that way in the workplace. As her manager, how should you respond What is the pressure in atm exerted by 1.8 g of H2 gas exert in a 4.3 L balloon at 27C? R = 0.821(L*atm) / (mol*K) 4. The caste system is ______ of Indiaa. EqualityC. Ruleb.Inequalityd. none of these Write sentences from phrases:umbrellas/ allwoman/ street Which equation represents a slope of 4 and y-intercept of (0,2)?y = 4x + 2y = 2xy = 2x 4y = 4x + 2 financial statements for non trading organization Solve the initial-value problem using the method of undetermined coefficients. y'' y' = xe^x, y(0) = 6, y'(0) = 5