Answer:
0.21 L.
Explanation:
From the question given above, the following data were obtained:
Initial temperature (T₁) = 17.5°C = 17.5°C + 273 = 290.5 K
Initial volume (V₁) = 173.8 mL
Final temperature (T₂) = 78 °C = 78 °C + 273 = 351 K
Final volume (V₂) =?
V₁/T₁ = V₂/T₂
173.8 / 290.5 = V₂ / 351
Cross multiply
290.5 × V₂ = 173.8 × 351
290.5 × V₂ = 61003.8
Divide both side by 290.5
V₂ = 61003.8 / 290.5
V₂ = 210 mL
Finally, we shall convert 210 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
210 mL = 210 mL × 1 L / 1000 mL
210 mL = 0.21 L
Thus, the final volume of the balloon is 0.21 L.
Answer:
[tex]\boxed {\boxed {\sf 0.775 \ L}}[/tex]
Explanation:
1. Calculated Final VolumeWe are asked to find the final volume of a balloon given a change in temperature. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula for this law is:
[tex]\frac{V_1}{T_1}= \frac{V_2}{T_2}[/tex]
The initial volume is 173.8 milliliters and the initial temperature is 17.5 degrees Celsius.
[tex]\frac {173.8 \ mL}{17.5 \textdegree C}= \frac{V_2}{T_2}[/tex]
The balloon is heated to a final temperature of 78.0 degrees Celsius, but the volume is unknown.
[tex]\frac {173.8 \ mL}{17.5 \textdegree C}= \frac{V_2}{78.0 \textdegree C}[/tex]
We are solving for the final volume, so we must isolate the variable V₂. It is being divided by 78.0 degrees Celsius. The inverse of division is multiplication, so we multiply both sides by 78.0 °C.
[tex]78.0 \textdegree C *\frac {173.8 \ mL}{17.5 \textdegree C}= \frac{V_2}{78.0 \textdegree C} * 78.0 \textdegree C[/tex]
[tex]78.0 \textdegree C *\frac {173.8 \ mL}{17.5 \textdegree C}=V_2[/tex]
The units of degrees Celsius cancel.
[tex]78.0 *\frac {173.8 \ mL}{17.5}=V_2[/tex]
[tex]78.0 *9.931428571 \ mL= V_2[/tex]
[tex]774.6514286 \ mL =V_2[/tex]
2. Convert to LitersWe are asked to give the volume in liters, so we must convert out units. Remember that 1 liter contains 1000 milliliters.
[tex]\frac { 1 \ L}{1000 \ mL}[/tex]
[tex]774.6514286 \ mL * \frac{ 1 \ L}{1000 \ mL}[/tex]
[tex]774.6514286 * \frac{ 1 \ L}{1000}[/tex]
[tex]0.7746514286 \ L[/tex]
3. RoundThe original values of volume and temperature have 3 and 4 significant figures. We always round our answer to the least number of sig figs, which is 3. This is the thousandths place for the number we calculated. The 6 in the ten-thousandths place tells us to round the 4 up to a 5.
[tex]0.775 \ L[/tex]
The final volume is approximately 0.775 liters.
Considering a fish breeder decided to breed small fishes which needs a pH between 6,0 to 7,0 to stay alive. He needs to adjust the water's pH that is 5,0 to a value of 6.5, having available only calcium carbonate. The mass in mg added to 5L of water is about:
A)2,5
B)5,5
C)6,5
D)7,5
E)9,5
CH3CH2OH
______ions
in an aqueous solution.
А
forms
B
does not form
Answer:
When ionic compounds dissolve, they break apart into ions which are then able to conduct a current ( conductivity ). ... Many molecular compounds, such as sugar or ethanol, are nonelectrolytes. When these compounds dissolve in water, they do not produce ions.
Explanation:
Ethanol is an organic compound with an alcoholic functional group and is nonelectrolytes. Ethanol (CH₃CH₂OH) does not form ions in an aqueous solution. Thus, option B is correct.
What are nonelectrolytes?Nonelectrolytes are substances that do not dissociate readily to yield ions and also are poor conductors of electricity and heat due to a lack of charged ions.
Ethanol is a nonelectrolyte that does not show conductivity and can be dissolved in water without producing ions. They cannot forms ions upon dissociation as covalent bonds are present.
Instead of ions that have covalent compounds that lack the ability to transfer the electron to conduct the electrical charge. Glucose, ethanol, etc. are some examples of a nonelectrolyte.
Therefore, option B. ethanol does not form ions is the correct blank.
Learn more about nonelectrolytes here:
https://brainly.com/question/14633704
#SPJ2
What is the trend in electropositivity in group 1 elements?
Answer:
Electro positivity increases down the group
What particules make up the nucleus
Answer:
nucleus is a collection of particles called protons,which are positively charged..and neutrons which are electrically neutral..electrons which are negatively charged..and neutrons are in turn made up of particles called quarks ..
Explanation:
hope this helps u ...
Answer:
The Nucleus is made up of protons and neutrons.
A bond dissociation energy is A) The energy required to remove an electron from an atom. B) The energy released when an ionic compound dissociates in water. C) The energy required to break a covalent bond. D) The energy produced in a chemical reaction that breaks chemical bonds.
Answer:
The energy required to break a covalent bond
Explanation:
When a chemical bond is formed, energy is released. When a chemical bond is broken, energy is absorbed.
We define the bond dissociation energy as the energy required to break a covalent bond. The process of covalent bond cleavage is endothermic hence energy is absorbed for the process to occur.
Two hydrogen atoms interact to form a hydrogen molecule.
a. True
b. False
Answer:
a. True
Explanation:
An atom can be defined as the smallest unit comprising of matter that forms all chemical elements. Thus, atoms are basically the building blocks of matters and as such determines or defines the structure of a chemical element.
Generally, atoms are typically made up of three distinct particles and these are protons, neutrons and electrons.
A chemical reaction can be defined as a chemical process which typically involves the transformation or rearrangement of the atomic, ionic or molecular structure of an element through the breakdown and formation of chemical bonds to produce a new compound or substance.
Hydrogen is the simplest chemical element that exists. The symbol for the chemical element hydrogen is "H" and it is a colourless, tasteless, odorless, and highly flammable gas.
It is a chemical element found in group (1) of the periodic table and as such it has one (1) electron in its outermost shell. Thus, hydrogen has an atomic number of one (1) and a single valence electron because it has only one (1) proton and one (1) electron in its nucleus.
In Stoichiometry, two hydrogen atoms interact to form a hydrogen molecule, with each atom having a single electron in the 1S orbital. These hydrogen atoms react with each other due to the presence of a balanced attractive and repulsive force, which produces a strong covalent bond (H-H) in the hydrogen molecule.
Energy is released in the form of heat when the electrons in the orbitals of the two (2) hydrogen atoms form a covalent bond (H-H); thus, it's an exothermic chemical reaction.
Based on the reaction below:
[tex]N_2 + 3H_2[/tex] ↔ [tex]2NH_3 + heat[/tex]
If we decrease the temperature, equilibrium will shift towards the...
Please explain!
N₂ + 3H₂ ⇄ 2NH₃ + heat
In the given equilibrium, we notice that the heat is on the right. which means that if the heat requirements don't meet, the reactants on the right will no longer react due to the lack of heat
but because the reactants on the left don't have such weaknesses, they will keep reacting hence producing more and more ammonia until a new equilibrium is reached
where there will be more ammonia and less nitrogen and hydrogen as compared to the equilibrium we had initially
Answer:
Explanation:
heat is given out as 1 of the products, along w/ NH3 in the forward reaction. so its an exothermic reaction
decreasing temperature favors exothermic reaction as more heat can be absorbed by the environment
so equilibrium will shift towards the products
When should a line graph be used
Answer:
Line graphs are used to track changes over short and long periods of time. When smaller changes exist, line graphs are better to use than bar graphs. Line graphs can also be used to compare changes over the same period of time for more than one group.
what vent system nitrogen vessel used to?
it's helpful
you can try this answer
Balance the following equations Ag (s) + H₂ S(g) + 0₂ (g) → Ag₂ S(₅) + H₂0
Answer:
2Ag(s) + 2H²S(g) + O2(g) ➡️ Ag2S(s) + 2H2O(g)
Explanation:
Sorry for my typo. but you understand
The rate constant of an SN1 reaction depends on the nucleophile b. The rate constant of an SN2 reaction does not depend on the nucleophile c. SN1 reactions proceed via carbocation intermediates d. The SN2 mechanism does not involve an intermediate
Answer:
The rate constant of an SN1 reaction depends on the nucleophile
The rate constant of an SN2 reaction does not depend on the nucleophile
Explanation:
Let us recall that in an SN1 reaction, the rate determining step involves only the alkyl halide substrate and not the nucleophile. Hence;
Rate = k[RX]
Therefore;
k= Rate/[RX]
For an SN2 reaction, the rate determining step involves both the nucleophile and the alkyl halide substrate.
Hence;
Rate = k[Nu-] [RX]
k= Rate/[Nu-] [RX]
Note that;
[Nu-] = concentration of the nucleophile
[RX] =concentration of alkyl halide substrate
k= rate constant
We can see from the above derivations that;
1) The rate constant of an SN1 reaction does not depend on the nucleophile
2) The rate constant of an SN2 reaction depends on the nucleophile
1. Metallic strontium crystallizes in a face-centered cubic lattice, with one Sr atom per lattice point. If the edge length of the unit cell is found to be 608 pm, what is the metallic radius of Sr in pm?
2. The substance beta manganese is found to crystallize in a cubic lattice, with an edge length of 630.0 pm. If the density of solid beta manganese is 7.297 g/cm3, how many Mn atoms are there per unit cell?
Answer:
[tex]r=215pm[/tex]
[tex]N_{Mn}=20[/tex]
Explanation:
From the question we are told that:
Edge length of the unit cell [tex]l=608pm[/tex]
a)
Generally the equation for The relationship between edge length and radius is mathematically given by
[tex]4r=\sqrt{2a}[/tex]
Therefore
[tex]4r=\sqrt{2*608}[/tex]
[tex]r=\frac{\sqrt{2*608}}{4}[/tex]
[tex]r=215pm[/tex]
b)
From the question we are told that:
Density [tex]\rho=7.297[/tex]
Edge length of [tex]l=630.0 pm=>630*10^-{10}[/tex]
Therefore Volume is given as
[tex]V=l^3[/tex]
[tex]V=630*10^-{10}^3[/tex]
[tex]V=2.50047*10^{−22}[/tex]
Generally the equation for Mass is mathematically given by
[tex]m=Volume*density[/tex]
[tex]m=V*\rho[/tex]
[tex]m=2.50047*10^{−22}*7.297[/tex]
[tex]m=1.83*10^{-21}g[/tex]
Therefore Molarity is given as
[tex]n=\frac{M}{Molar M}[/tex]
[tex]n=\frac{1.83*10^{-21}g}{55}[/tex]
[tex]n=3.32*10^{-23}[/tex]
Finally The atoms in a unit cell is
[tex]N_{Mn}=Moles*Avogadro\ constant[/tex]
[tex]N_{Mn}=3.32*10^{-23}*6.023*10^{23}[/tex]
[tex]N_{Mn}=20[/tex]
If the Ksp of NaCl is experimentally determined to be 43.9, then what is the concentration of Na (in M) when it begins to crystallize out of solution
Answer:
6.63 M
Explanation:
NaCl(s) ---> Na^+(aq) + Cl^-(aq)
Given that [Na^+] = [Cl^-] = s
Where s= concentration of the both ions
Ksp = s^2
s= √Ksp
s= √43.9
s= 6.63 M
The concentration of Na (in M) obtained when it begins to crystallize out of solution is 6.63 M
What is solubility of product?The solubility of product (Ksp) is defined as the concentration of products raised to their coefficient coefficients. This is illustrated below:
mX <=> nY + eZ
Ksp = [Y]^n × [Z]^e
Dissociation equationNaCl(aq) → Na⁺(aq) + Cl¯(aq)
Let the concentration of Na⁺ be yLet the concentration of Cl¯ be yHow to determine the concentration of Na⁺ Solubility of product (Ksp) = 43.9Concentration of Cl¯ = yConcentration of Na⁺ = y =?Ksp = [Na⁺] × [Cl¯]
43.9 = y × y
43.9 = y²
Take the square root of both side
y = √43.9
y = 6.63 M
Thus, the concentration of Na⁺ is 6.63 M
Learn more about solubility of product:
https://brainly.com/question/4530083
If 650. grams of C6H12O6 (FW 180.16) reacts with 650. grams of O2 (FW 32.00) in cellular respiration: C6H12O6 6 O2 --> 6 CO2 6 H2O Which is the limiting reactant
Answer:
O2 is limiting reactant
Explanation:
To find the limiting reactant we need to convert the mass of each reactant to the moles using the formula weight. And, as 1 mole of C6H12O6 reacts with 6 moles of O2, we can know wich reactant will be over first (Limiting reactant) as follows:
Moles C6H12O6:
650g * (1mol/180.16g) = 3.608 moles C6H12O6
Moles O2:
650g * (1mol/32g) = 20.31 moles O2
Now, for a complete reaction of 3.608 moles of C6H12O6 are required:
3.608 moles C6H12O6 * (6mol O2 / 1mol C6H12O6) = 21.65 moles O2
As there are just 20.31 moles of O2,
O2 is limiting reactant
The reaction responsible for producing the heat that maintains the temperature of your body is
Answers
A.
metabolism.
B.
catabolism.
C.
anabolism.
D.
photosynthesis.
Question
Answer:
A
Explanation:
it increase the rate of reaction when necessary
The chemical change that is responsible for producing the heat that maintains the temperature of your body is metabolism.
What is chemical change?
Chemical changes are defined as changes which occur when a substance combines with another substance to form a new substance.Alternatively, when a substance breaks down or decomposes to give new substances it is also considered to be a chemical change.
There are several characteristics of chemical changes like change in color, change in state , change in odor and change in composition . During chemical change there is also formation of precipitate an insoluble mass of substance or even evolution of gases.
There are three types of chemical changes:
1) inorganic changes
2)organic changes
3) biochemical changes
During chemical changes atoms are rearranged and changes are accompanied by an energy change as new substances are formed.
Learn more about chemical changes,here:
https://brainly.com/question/23693316
#SPJ7
Predict whether solutions of each of the following salts will be acidic, basic, or neutral. Explain your reasoning for each by writing a balanced net ionic equation to describe the chemistry of each non-neutral salt in water:
a. NaCN
b. KNO3
c. NH4Cl
d. NaHCO3
e. Na3PO4.
Answer:
NaCN- basic salt
KNO3 - neutral salt
NH4Cl - acid salt
NaHCO3 - acid salt
Na3PO4 - acid salt
Explanation:
Salt hydrolysis a process by which salts react with water giving an acid and a base.
When we dissolve NaCN in water, we have;
NaCN + - ⇄ Na^+ + CN^-
KNO3 ------> K^+ + NO3^-
NH4Cl ------> NH4^+ + Cl^-
NaHCO3 -----> Na^+ + HCO3^-
Na3PO4 ----> 3Na^+ + PO4^3-
Note that if a salt is formed from a weak acid and a strong base, the salt will be a basic salt e.g NaCN formed from weak HCN and strong NaOH.
If a salt is formed from a strong acid and weak base, the salt will be acidic, e.gNH4Cl formed from weak NH3 and strong HCl.
If a salt is formed from a strong acid and strong base, the salt will be neutral, e.g KNO3 formed from strong KOH and strong HNO3.
In an ELISA, the compound 4-chloro-1-naphthol is used because:_______
a. it turns color in the presence of an enzyme that is bound to the secondary antibody
b. it helps the primary antibody bind to the protein
c. it helps the secondary antibody to bind to the protein
d. all of the choices
Answer:
a. It turns color in the presence of an enzyme that us bound to the secondary antibody.
Explanation:
The compound chloronapthenel is used in the reaction because it changes the color in the presence of an enzyme. It is strong organic compound which is used in biochemical processes.
Which process refers to the dissociation of Naci into Na+ and Ci+?
Answer:
dissolution is the process
Place the following elements in order of decreasing atomic size: lead, phosphorus, oxygen, cesium, barium, and silicon.
Rank from largest to smallest. To rank items as equivalent, overlap them.
Cs, O, P, Si, Ba, Pb
Answer:
Cs> Ba> Pb>Si> P>O
Explanation:
Recall that atomic size decreases across a period and increases down the group.
As we move from Cs to Ba, the atomic size decreases across the period. Lead is larger than silicon since atomic size increases down the group.
Between phosphorus and oxygen, phosphorus is larger than oxygen as you move across the period.
Two chemicals A and B are combined to form a chemical C. The rate, or velocity, of the reaction is proportional to the product of the instantaneous amounts of A and B not converted to chemical C. Initially, there are 100 grams of A and 50 grams of B, and for each gram of B, 2 grams of A is used. It is observed that 25 grams of C is formed in 9 minutes. How much is formed in 36 minutes
Answer:
In 36 minutes, 100 grams of Chemical C is formed.
Explanation:
Combination of chemicals A and B = chemical C
Chemical A available = 100 grams
Chemical B available = 50 grams
Proportion of A mixed with C = A2
Proportion of B mixed with C = B1
Therefore, Chemical C = A2 + B1
If 25 grams of C is formed in 9 minutes
In one minute 25/9 grams of C will be formed
Therefore, in 36 minutes, 25/9 * 36 = 100 grams
Which of the following compounds would you expect to be an electrolyte?
N2
CH4
H2O
O2
КСІ
Answer:
N2 but i really didn't know
The compound that would be expected to be an electrolyte is : ( A ) N₂
What is an electrolyte
An electrolyte is any subsatnce which conducts electircity when dissolved in a solvent such as water. From the question the compound that can conduct electricty when dissolved in water is N₂
Hence we can conclude that The compound that would be expected to be an electrolyte is : ( A ) N₂
Learn more about electrolyte : https://brainly.com/question/14308411
#SPJ2
Hydrogengasand oxygengas react to form water vapor. Suppose you have of and of in a reactor. Calculate the largest amount of that could be produced. Round your answer to the nearest .
The question is incomplete. The complete question is :
Hydrogen [tex](H_2)[/tex] gas and oxygen [tex](O_2)[/tex] gas react to form water vapor [tex](H_2O)[/tex]. Suppose you have 11.0 mol of [tex]H_2[/tex] and 13.0 mol of [tex]O_2[/tex] in a reactor. Calculate the largest amount of [tex]H_2O[/tex] that could be produced. Round your answer to the nearest 0.1 mol .
Solution :
The balanced reaction for reaction is :
[tex]$2H_2(g) \ \ \ \ + \ \ \ \ \ O_2(g)\ \ \ \rightarrow \ \ \ \ 2H_2O(g)$[/tex]
11.0 13.0
11/2 13/1 (dividing by the co-efficient)
6.5 mol 13 mol (minimum is limiting reagent as it is completely consumed during the reaction)
Therefore, [tex]H_2[/tex] is limiting reagent. It's stoichiometry decides the product formation amount from equation above it is clear that number of moles for [tex]H_2O[/tex] will be produced = number of moles of [tex]H_2[/tex]
= 11.0 mol
When would exposure to a potentially harmful substance most likely to damage many organs in a developing embryo?
Consider an equilibrium (K1) that is established after 10 mL of compound A and 10 mL of compound B are mixed. Now, imagine the equilibrium (K2) where 1 mL of compound A is added to 100 mL of compound B. How are K1 and K2 related algebraically (read this question VERY carefully, at least one more time)
The equilibrium constant K₁ = Equilbrium constant K₂.
The equilibrium constant, K, of a reaction, is defined as:
"The ratio between concentration of products powered to their reaction quotient and concentration of reactants powered to thier reaction quotient".
For the reaction:
aA + bB ⇄ cC + dD
The equilibrium constant, K, is:
[tex]K = \frac{[C]^c[D]^d}{[A]^a[B]^b}[/tex]
Now, assuming the reaction of the problem is 1:1:
A + B ⇄ C + D
[tex]K = \frac{[C][D]}{[A][B]}[/tex]
The concentrations of the reactants are directly proportional to the volume added. Thus, we can assume that concentration = Volume. Replacing for K₁ and K₂:
[tex]K_1 = \frac{[C][D]}{[10mL][10mL]} = K_1 = \frac{[C][D]}{100mL^2}[/tex]
In the same way:
[tex]K_2 = \frac{[C][D]}{[1mL][100mL]} = K_2 = \frac{[C][D]}{100mL^2}[/tex]
Thus, we can say:
K₁ = K₂Learn more about chemical equilibrium in:
https://brainly.com/question/4289021?referrer=searchResults
Because the double bond in an alkene is rigid, alkenes can exist as geometric isomers. To clarify geometric isomers, IUPAC uses cis- and trans- as part of a compound name. If the substituents around the double bond are on the same side of the double bond, this is called
cis, cis.
cis.
cis, trans.
trans.
Answer:
cis
Explanation:
Cis isomers are formed when the substituents on the carbons of the double bond are on the same side of the double bond, forming a U. Trans isomers have substituents on opposite sides of the double bond, forming a sideways Z.
Consider the chemical reaction: N2 3H2 yields 2NH3. If the concentration of the reactant H2 was increased from 1.0 x 10-2 M to 2.5 x 10-1 M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K.
In this equilibrium, the chemical system will shift to the right in order to produce more NH₃.
The equilibrium constant of a reaction is defined as:
"The ratio between equilibrium concentrations of products powered to their reaction quotient and equilibrium concentration of reactants powered to thier reaction quotient".
The reaction quotient, Q, has the same algebraic expressions but use the actual concentrations of reactants.
To solve this question we need this additional information:
For this reaction, K = 6.0x10⁻² and the initial concentrations of the reactants are:
[N₂] = 4.0M; [NH₃] = 1.0x10⁻⁴M and [H₂] = 1.0x10⁻²M
Thus, for the reaction:
N₂ + 3H₂ ⇄ 2NH₃
The equilibrium constant, K, of this reaction, is defined as:
[tex]K = \frac{[NH_3]^2}{[H_2]^3[N_2]}[/tex]
Where [] are concentrations in equilibrium.
And Q, is:
[tex]Q = \frac{[NH_3]^2}{[H_2]^3[N_2]}[/tex]
Where actual concentrations are:
[NH₃] = 1.0x10⁻⁴M
[N₂] = 4.0M
[H₂] = 2.5x10⁻¹M
Replacing:
Q = 1.6x10⁻⁷
As Q < K,
The chemical system will shift to the right in order to produce more NH₃
Learn more about chemical equililbrium in:
https://brainly.com/question/24301138
81.5 g of metal was heated from 11 degrees Celsius to 69 degrees Celsius. If 6739 joules of heat energy were used, what is the specific heat capacity of the metal?
Answer:
the metal become red hot
Give me an atom with the following characteristics:
Lanthanide series
Boron
Chalogen
Alkaline Earth metal
Explanation:
Lanthanide series= E4
Boron=Si
Chalogen=O
Alkaline Earth metal =M9
What is the pH of a solution with an [H+] of (a) 5.4 x 10-10, (b) 4.3 x 10-5, (c) 5.4 x 10-7?
Answer:
a. 9.2
b. 4.4
c. 6.3
Explanation:
In order to calculate the pH of each solution, we will use the definition of pH.
pH = -log [H⁺]
(a) [H⁺] = 5.4 × 10⁻¹⁰ M
pH = -log [H⁺] = -log 5.4 × 10⁻¹⁰ = 9.2
Since pH > 7, the solution is basic.
(b) [H⁺] = 4.3 × 10⁻⁵ M
pH = -log [H⁺] = -log 4.3 × 10⁻⁵ = 4.4
Since pH < 7, the solution is acid.
(c) [H⁺] = 5.4 × 10⁻⁷ M
pH = -log [H⁺] = -log 5.4 × 10⁻⁷ = 6.3
Since pH < 7, the solution is acid.
Predict the reactants of this chemical reaction. That is, fill in the left side of the chemical equation. Be sure the equation you submit is balanced. (You can edit both sides of the equation to balance it, if you need to.)
Note: you are writing the molecular, and not the net ionic equation.
NaClO3(aq) + H2O(l)
Answer:
HClO₃(aq) + NaOH(aq) ⇒ NaClO₃(aq) + H₂O(l)
Explanation:
We have the products of a reaction and we have to predict the reactants. Since the products are salt and water, this must be a neutralization reaction. In a neutralization reaction, an acid reacts with a base. To form NaClO₃, the acid must be HClO₃(aq) and the base NaOH(aq). The balanced chemical equation is:
HClO₃(aq) + NaOH(aq) ⇒ NaClO₃(aq) + H₂O(l)